MATH319 Slides
74 Proof of properties
76 Laplace transform of derivative
75 Integration
|
λ
f
(
x
)
+
μ
g
(
x
)
|
≤
M
e
β
x
,
so we can integrate
∫
0
∞
e
-
s
x
(
λ
f
(
x
)
+
μ
g
(
x
)
)
𝑑
x
=
λ
∫
0
∞
e
-
s
x
f
(
x
)
𝑑
x
+
μ
∫
0
∞
e
-
s
x
g
(
x
)
𝑑
x
.
(iv) Suppose that
|
f
′
(
x
)
|
≤
M
e
β
x
for all
x
>
0
and some
β
>
0
. Then
f
(
x
)
=
f
(
0
)
+
∫
0
x
f
′
(
t
)
𝑑
t
,
so
|
f
(
x
)
|
≤
|
f
(
0
)
|
+
∫
0
x
M
e
β
t
𝑑
t
=
|
f
(
0
)
|
+
[
M
e
β
t
β
]
0
x