MATH319 Slides

137 Poles of the transfer function of the damped harmonic oscillator

Consider 1/(s2+βs+γ) with γ>0 and β real with poles at λ±=(1/2)(-β±Δ) where Δ=β2-4γ. Then

(polesβΔ<0Δ=0Δ>0λ+=λ¯-λ+=λ-distinct real rootsunstableβ<0λ±>0λ±>00<λ-<λ+marginalβ=0λ+=0λ±=0λ-<0<λ+stableβ>0λ±<0λ±<0λ-<λ+<0)

For a damped harmonic oscillator, we have β,γ>0, so only the last row matters. The last row gives the stable cases.