MATH319 Slides
112 Exponentials of diagonable matrices
114 BIBO stability
113 Conclusion of Proof
where
|
e
t
λ
j
|
=
e
t
ℜ
λ
j
≤
e
t
κ
for all
t
≥
0
, hence
∑
j
=
1
n
|
e
t
λ
j
z
j
|
2
≤
e
2
t
κ
∑
j
=
1
n
|
z
j
|
2
so
∥
exp
(
t
D
)
z
∥
≤
e
t
κ
∥
z
∥
; hence
∥
exp
(
t
A
)
∥
≤
∥
S
∥
∥
[
e
t
λ
1
0
…
0
⋱
0
0
…
e
t
λ
n
]
∥
∥
S
-
1
∥
≤
∥
S
∥
∥
S
-
1
∥
max
j
=
1
,
…
,
n
|
e
t
λ
j
|
≤
∥
S
∥
∥
S
-
1
∥
e
t
κ
.