Home page for accesible maths 7 Linear transformations

Style control - access keys in brackets

Font (2 3) - + Letter spacing (4 5) - + Word spacing (6 7) - + Line spacing (8 9) - +

7.5 Key definitions and Relationships

Let (X,Y) be a bivariate rv and 𝑿=(X1,,Xn)t and 𝒀=(Y1,,Ym) be vector rvs.

  1. 1.

    The covariance of X and Y is 𝖢𝗈𝗏[X,Y]=𝖤[(X-𝖤[X])(Y-𝖤[Y])]=𝖤[XY]-𝖤[X]𝖤[Y]. 𝖵𝖺𝗋[X]=𝖢𝗈𝗏[X,X].

  2. 2.

    Bilinearity: 𝖢𝗈𝗏[aX,Y]=a𝖢𝗈𝗏[X,Y] and 𝖢𝗈𝗏[W+X,Y]=𝖢𝗈𝗏[W,Y]+𝖢𝗈𝗏[X,Y]

  3. 3.

    The correlation between X and Y is 𝖢𝗈𝗋𝗋[X,Y]=𝖢𝗈𝗏[X,Y]/𝖵𝖺𝗋[X]𝖵𝖺𝗋[Y].

  4. 4.

    Vector/matrix forms: 𝖤[𝑿]=(𝖤[X1],,𝖤[Xn])t. 𝖵𝖺𝗋[𝑿] is the matrix with (i,j)-th element 𝖢𝗈𝗏[Xi,Xj].

  5. 5.

    Summaries for linear transformations: 𝖤[A𝑿]=A𝖤[𝑿] and 𝖵𝖺𝗋[A𝑿]=A𝖵𝖺𝗋[𝑿]A, so 𝖤[𝒂𝑿]=𝒂𝖤[X], 𝖵𝖺𝗋[𝒂𝑿]=𝒂𝖵𝖺𝗋[𝑿]𝒂, and 𝖢𝗈𝗏[𝒂1𝑿,𝒂2𝑿]=𝒂1𝖵𝖺𝗋[𝑿]𝒂2.