Home page for accesible maths

Style control - access keys in brackets

Font (2 3) - + Letter spacing (4 5) - + Word spacing (6 7) - + Line spacing (8 9) - +

6.5 Key definitions and Relationships

Let (X,Y) be a bivariate rv and 𝑿=(X1,,Xn)t and 𝒀=(Y1,,Ym) be vector rvs.

  1. 1.

    Bivariate expectation: for a discrete rv 𝖤[g(X,Y)]=i=-j=-pX,Y(i,j)g(i,j). For a continuous rv 𝖤[g(X,Y)]=--fX,Y(s,t)g(s,t)dsdt.

  2. 2.

    Linearity: 𝖤[ag(X,Y)+bh(X,Y)]=a𝖤[g(X,Y)]+b𝖤[h(X,Y)].

  3. 3.

    If X and Y are independent then 𝖤[g(X)h(Y)]=𝖤[g(X)h(Y)].

  4. 4.

    The conditional expectation of X given Y=y is 𝖤[g(X)|Y=y]=i=-pX|Y(i|y)g(i) if X is a discrete rv, and 𝖤[g(X)|Y=y]=-fX|Y(t|y)g(t)dt if X is continuous.

  5. 5.

    The conditional variance of X given Y=y is 𝖵𝖺𝗋[X|Y=y]=𝖤[X2|Y=y]-𝖤[X|Y=y]2.

  6. 6.

    Tower: 𝖤[X|Y] is a function of Y and hence a random variable; 𝖤[𝖤[X|Y]]=𝖤[X].

  7. 7.

    The moment generating function, MX(t)=𝖤[etX], uniquely determines the distribution of X. For integer k, 𝖤[Xk]=MX(k)(0).

  8. 8.

    If X and Y are independent then MX+Y(t)=MX(t)MY(t).