Home page for accesible maths 11 Other useful distributions

Style control - access keys in brackets

Font (2 3) - + Letter spacing (4 5) - + Word spacing (6 7) - + Line spacing (8 9) - +

11.6 Links Between Standard Distributions

In this section we list further links between standard distributions obtained by univariate and multivariate transformations of independent random variables. Many of these results are important in statistics.

X g(X) Y
𝖴𝗇𝗂𝖿(0,1) FY-1(X) FY
FX FX(X) 𝖴𝗇𝗂𝖿(0,1)
𝖴𝗇𝗂𝖿(a,b) (X-a)/(b-a) 𝖴𝗇𝗂𝖿(0,1)
𝖴𝗇𝗂𝖿(0,1) a+(b-a)X 𝖴𝗇𝗂𝖿(a,b)
𝖤𝗑𝗉(β) βX 𝖤𝗑𝗉(1)
𝖤𝗑𝗉(1) X/β 𝖤𝗑𝗉(β)
𝖤𝗑𝗉(1) X1/α/β 𝖶𝖾𝗂𝖻(α,β)
𝖶𝖾𝗂𝖻(α,β) (βX)α 𝖤𝗑𝗉(1)
𝖦𝖺𝗆(α,β) βX 𝖦𝖺𝗆(α,1)
𝖦𝖺𝗆(α,1) X/β 𝖦𝖺𝗆(α,β)
Fν1,ν2 1X Fν2,ν1
tν X2 F1,ν
Beta(α1,α2) α2α1X1-X F2α1,2α2
𝖭(μ,σ2) (X-μ)/σ 𝖭(0,1)
𝖭(0,1) μ+σX 𝖭(μ,σ2)
𝖭(0,1) X2 𝖦𝖺𝗆(1/2,1/2)
𝖭(μ,σ2) 𝖤𝗑𝗉(X) log 𝖭(μ,σ2)
Table 11.1: Univariate random variables that are related by transformation.
Distribution of Z,X, Transformation Distribution of Y
ZiN(0,1), i=1,,n Y=Z12++Zn2 χn2
XiN(μi,σi2), i=1,,n Y=X1++Xn N(μ1++μn,σ12++σn2)
XiN(μi,σi2), i=1,,n Y=i=1naiXi N(i=1naiμi,i=1nai2σi2)
ZN(0,1), Xχν2 Y=ZX/ν tν
X1χν12, X2χν22, Y=X1/ν1X2/ν2 Fν1,ν2
XiExp(β), i=1,,n Y=X1++Xn Gamma(n,β)
XiGamma(αi,β), i=1,,n Y=X1++Xn Gamma(α1++αn,β)
X1Gamma(αi,β), i=1,2 Y=X1X1+X2 Beta(α1,α2)
Table 11.2: Random variables that are related by transformation from multiple independent RVs. All the variables in the left hand column are assumed independent.