Home page for accesible maths 11 Other useful distributions

Style control - access keys in brackets

Font (2 3) - + Letter spacing (4 5) - + Word spacing (6 7) - + Line spacing (8 9) - +

11.5 The Extreme Value (aka Gumbel) Distribution

Parameters : 𝜽=(α,β) with a location parameter α and a scale parameter β>0.

  1. fX(x;𝜽)=1βexp{-(x-α)/β}exp[-exp{-(x-α)/β}] for -<x<,

  2. FX(x)=exp[-exp{-(x-α)/β}],

  3. 𝖤[X]=α+βγ, where γ0.5772 is Euler’s constant,

  4. 𝖵𝖺𝗋[X]=β2π26.

We write X𝖦𝖤𝖵(α,β,0).

Transformations: If X has a Weibull(α,β) distribution, then -log(X) has an extreme value distribution with location parameter log(β) and scale parameter 1/α. In particular, if X is Exp(λ)-distributed, i.e. X is Weibull(1,λ)-distributed, then -log(X) has an extreme value distribution with location parameter log(λ) and scale parameter 1.

Usage: Used to model extreme events such as the height of the biggest wave in a day or the highest or lowest temperature or rainfall amount in a month.

Example 11.5.1.

Let X1 and X2 be iid with 𝖦𝗎𝗆𝖻𝖾𝗅(α,β) distributions. Show that Y=max(X1,X2) also has a Gumbel distribution and find its parameters.

Solution.  First note that Yy if and only if X1y and X2y, so

FY(y) =FX1(y)FX2(y)=exp[-exp{-(x-α)/β}]×exp[-exp{-(x-α)/β}]
=exp[-2exp{-(x-α)/β}]
=exp[-exp{-(x-α)/β+log2}]
=exp[-exp{-(x-α-βlog2)/β}],

which is the cdf of a 𝖦𝗎𝗆𝖻𝖾𝗅(α+βlog2,β) distribution.