Home page for accesible maths 8 Homework and quiz exercises

Style control - access keys in brackets

Font (2 3) - + Letter spacing (4 5) - + Word spacing (6 7) - + Line spacing (8 9) - +

8.4 Quiz 2

Please submit solutions to the following via moodle by 23:59 on Wednesday 30th November. Each question is worth [2] marks. See Week07Logic.pdf for information which may help with Q2.3-Q2.5.

Q2.1.Convergence. Which of the following statements about the function h(x)h(x) is FALSE, where:

h(x)=2log(x3+x+2)-3log(x2+2x+1)?h(x)=2\log(x^{3}+x+2)-3\log(x^{2}+2x+1)\;\;\mbox{?}

(A) hh has a stationary point at x=53x=\frac{5}{3}. \;\; (B) h(R)0h(R)\rightarrow 0 as RR\rightarrow\infty. \;\; (C) h(0)=log4h(0)=\log 4.

(D) h(x)h(x) is well-defined for every real number xx. \;\; (E) eh(x)e^{h(x)} is a rational function in xx.

Q2.2.Improper integrals. One of the following statements describes the improper integrals

I=01dxx(1+x)andJ=01dx(1-x)(1+x2).I=\int_{0}^{1}{{dx}\over{\sqrt{x}(1+x)}}\quad{\hbox{and}}\quad J=\int_{0}^{1}{% {dx}\over{(1-x)(1+x^{2})}}.

(A) Both II and JJ diverge. \;\;\;\;\; (B) The integral II converges to π/2\pi/2, whereas JJ diverges.

(C) Integral II converges to log2\log 2, whereas JJ diverges. \;\;\;\;\; (D) Both II and JJ converge.

(E) Whereas II diverges, JJ converges to log2\log 2.

Q2.3Elements within a range. Let (a1,a2,,a100)\color{blue}\colorlet{pgfstrokecolor}{.}{(a_{1},a_{2},\ldots,a_{100})} be a sequence with kk-th element

ak=sin(3kπ44).\displaystyle a_{k}=\sin\Bigl(\frac{3k\pi}{44}\Bigr).

Find the number of elements of the sequence for which -34<ak-14\color{blue}\colorlet{pgfstrokecolor}{.}{-\frac{3}{4}<a_{k}\leq-\frac{1}{4}}.

Q2.4Comparison of sequences. A second sequence (b1,b2,,b100)\color{blue}\colorlet{pgfstrokecolor}{.}{(b_{1},b_{2},\ldots,b_{100})} has kk-th element

bk=cos(5kπ13).\displaystyle b_{k}=\cos\Bigl(\frac{5k\pi}{13}\Bigr).

How many of the 100 pairs of elements satisfy the condition |ak|>14ORak<bk\color{blue}\colorlet{pgfstrokecolor}{.}{|a_{k}|>\frac{1}{4}\leavevmode% \nobreak\ \leavevmode\nobreak\ \mbox{OR}\leavevmode\nobreak\ \leavevmode% \nobreak\ a_{k}<b_{k}}?

Q2.5If Statements. Let xx be a scalar real number within the interval (0,50](0,50] assigned to object x. If the following R code is performed

if (x > 25) {

y <- sum( x < 1:50 )

}else {

y <- sum( x > 0:49 )

}

then the object y represents

y\displaystyle y =\displaystyle= {Aifx>25Bifx25\displaystyle\left\{\begin{array}[]{lll}{\bf\mbox{A}}&&\mbox{if}\leavevmode% \nobreak\ \leavevmode\nobreak\ x>25\\ {\bf\mbox{B}}&&\mbox{if}\leavevmode\nobreak\ \leavevmode\nobreak\ x\leq 25\end% {array}\right.

for some statements A and B. Match up A and B from the following list

  1. i)

    x\lfloor x\rfloor

  2. ii)

    x\lceil x\rceil

  3. iii)

    50-x\lfloor 50-x\rfloor

  4. iv)

    50-x\lceil 50-x\rceil

  5. v)

    25-x\lfloor 25-x\rfloor

where x\lfloor x\rfloor denotes rounding down to the nearest integer and x\lceil x\rceil denotes rounding up. In R these operations can be performed directly using floor(x) and ceiling(x).