Home page for accesible maths 6 Chapter 6 contents

Style control - access keys in brackets

Font (2 3) - + Letter spacing (4 5) - + Word spacing (6 7) - + Line spacing (8 9) - +

6.6 Further example

Example.

Find the general solution to the equation dxdt=tsinat\frac{dx}{dt}=t\sin at, where aa is a constant. Find the particular solution with x(0)=1x(0)=1.

Solution. We integrate both sides to obtain

x(t)=tsinatdt=-tacosat+1acosatdtx(t)={\int t\sin at\,dt=\frac{-t}{a}\cos at+\frac{1}{a}\int\cos at\,dt}
=-tacosat+1a2sinat+c={\frac{-t}{a}\cos at+\frac{1}{a^{2}}\sin at+c}

which is the general solution. For the particular solution, we require x(0)=1x(0)=1 and therefore -0+0+c=1,{-0+0+c=1,} whence

x(t)=1-tacosat+1a2sinat.x(t)={1-\frac{t}{a}\cos at+\frac{1}{a^{2}}\sin at.}