Home page for accesible maths 6 Chapter 6 contents

Style control - access keys in brackets

Font (2 3) - + Letter spacing (4 5) - + Word spacing (6 7) - + Line spacing (8 9) - +

6.5 Example

Example.

Find the unique solution to the equation dxdt=te2t\frac{dx}{dt}=te^{2t} such that x(0)=34x(0)=\frac{3}{4}.

Solution. We first find the general solution to the equation. Integrating by parts, the indefinite integral is

te2tdt=12te2t-12e2tdt=12te2t-14e2t+c.\int te^{2t}\,dt={\frac{1}{2}te^{2t}-\frac{1}{2}\int e^{2t}\,dt=}{\frac{1}{2}% te^{2t}-\frac{1}{4}e^{2t}+c.}

Then to find the value of cc, we simply equate x(0)=-14+c=34x(0)={-\frac{1}{4}+c}=\frac{3}{4} to obtain c=1.c={1.} Thus x(t)=(12t-14)e2t+1.x(t)={\left(\frac{1}{2}t-\frac{1}{4}\right)e^{2t}+1.}