Home page for accesible maths 6 Chapter 6 contents

Style control - access keys in brackets

Font (2 3) - + Letter spacing (4 5) - + Word spacing (6 7) - + Line spacing (8 9) - +

6.50 Another example

Example.

Find the solution of the initial-value problem

d2ydx2+α2y=cosαx, y(0)=y(0)=0\frac{d^{2}y}{dx^{2}}+\alpha^{2}y=\cos\alpha x,\;\;y(0)=y^{\prime}(0)=0

where α\alpha is a non-zero constant.

We apply the Laplace transform to both sides. We have

(y′′)=-y(0)+s(y)=s(y){\mathcal{L}}(y^{\prime\prime})=-y^{\prime}(0)+s{\mathcal{L}}(y^{\prime})=s{% \mathcal{L}}(y^{\prime})

and similarly, (y)=s(y){\mathcal{L}}(y^{\prime})=s{\mathcal{L}}(y). Thus (y′′+α2y)=(s2+α2)(y){\mathcal{L}}\left(y^{\prime\prime}+\alpha^{2}y\right)=(s^{2}+\alpha^{2}){% \mathcal{L}}(y).

On the other side, we have (cosαx)=ss2+α2.{\mathcal{L}}(\cos\alpha x)={\frac{s}{s^{2}+\alpha^{2}}.} Equating both sides and dividing by (s2+α2)(s^{2}+\alpha^{2}), we have (y)=s(s2+α2)2.{\mathcal{L}}(y)={\frac{s}{(s^{2}+\alpha^{2})^{2}}.}