Home page for accesible maths 6 Chapter 6 contents

Style control - access keys in brackets

Font (2 3) - + Letter spacing (4 5) - + Word spacing (6 7) - + Line spacing (8 9) - +

6.49 Solving differential equations with Laplace transforms

Example.

Solve the initial value problem

dydx+y=52sin2x,  y(0)=0.\frac{dy}{dx}+y=\frac{5}{2}\sin 2x,\;\;\;y(0)=0.

We apply the Laplace transform to both sides, to obtain:

(dydx+y)=522s2+4=5s2+4.{\mathcal{L}}\left(\frac{dy}{dx}+y\right)={\frac{5}{2}\frac{2}{s^{2}+4}=}\,{% \frac{5}{s^{2}+4}.}

Now the left-hand side is

(dydx)+(y)=(-y(0)+s(y))+(y)=(s+1)(y).{\mathcal{L}}\left(\frac{dy}{dx}\right)+{\mathcal{L}}(y)=(-y(0)+s{\mathcal{L}}% (y))+{\mathcal{L}}(y)=(s+1){\mathcal{L}}(y).

Now we divide through by (s+1)(s+1) to obtain (y)=5(s+1)(s2+4).{\mathcal{L}}(y)={\frac{5}{(s+1)(s^{2}+4)}.} Now we apply -1{\mathcal{L}}^{-1} to get y=e-x+12sin2x-cos2xy=e^{-x}+\frac{1}{2}\sin 2x-\cos 2x.