Home page for accesible maths 6 Chapter 6 contents

Style control - access keys in brackets

Font (2 3) - + Letter spacing (4 5) - + Word spacing (6 7) - + Line spacing (8 9) - +

6.36 Example: exceptional case

Example.

Find a particular integral for the equation

d2ydx2+dydx-2y=e-2x.\frac{d^{2}y}{dx^{2}}+\frac{dy}{dx}-2y=e^{-2x}.

In this case the auxiliary equation is s2+s-2=(s+2)(s-1)s^{2}+s-2={(s+2)(s-1)} so the CF is Aex+Be-2xAe^{x}+Be^{-2x}. Now the function q(x)q(x) on the right-hand side is already a solution for the homogeneous equation, so to find the PI we consider yy of the form Cxe-2xCxe^{-2x}. Then we have y=Ce-2x-2Cxe-2xy^{\prime}={Ce^{-2x}-2Cxe^{-2x}} and y′′=4Cxe-2x-4Ce-2x.y^{\prime\prime}={4Cxe^{-2x}-4Ce^{-2x}.} Grouping terms together, we obtain

y′′+y-2y=(4C-2C-2C)xe-2x+(-4C+C)e-2x=-3Ce-2xy^{\prime\prime}+y^{\prime}-2y={(4C-2C-2C)xe^{-2x}+(-4C+C)e^{-2x}=}\,{-3Ce^{-2% x}}

and hence the PI is: -13xe-2x\frac{-1}{3}xe^{-2x}.