Home page for accesible maths 6 Chapter 6 contents

Style control - access keys in brackets

Font (2 3) - + Letter spacing (4 5) - + Word spacing (6 7) - + Line spacing (8 9) - +

6.34 Next example

Example.

Find the particular integral for the differential equation

d2ydx2+3dydx-4y=2e2x.\frac{d^{2}y}{dx^{2}}+3\frac{dy}{dx}-4y=2e^{2x}.

In this case the auxiliary equation is s2+3s-4=(s+4)(s-1)s^{2}+3s-4=(s+4)(s-1), so κ=2\kappa=2 is not a root. Then the PI is of the form y=Ce2x.y={Ce^{2x}.} In this case we have y=2Ce2xy^{\prime}=2Ce^{2x} and y′′=4Ce2xy^{\prime\prime}=4Ce^{2x}, so that

y′′+3y-4y=(4C+6C-4C)e2x=6Ce2x.y^{\prime\prime}+3y^{\prime}-4y={(4C+6C-4C)e^{2x}=6Ce^{2x}.}

We now solve for CC to obtain C=13,C={\frac{1}{3},} so that the particular integral is 13e2x.{\frac{1}{3}e^{2x}.}