Home page for accesible maths 6 Chapter 6 contents

Style control - access keys in brackets

Font (2 3) - + Letter spacing (4 5) - + Word spacing (6 7) - + Line spacing (8 9) - +

6.21 Example

Example.

Find the general solution to the equation

dydx+yx=x2.\frac{dy}{dx}+\frac{y}{x}=x^{2}.

In this case p(x)=1xp(x)=\frac{1}{x}, so the integrating factor

I(x)=edx/x=elogx=x.I(x)={e^{\int dx/x}=}{e^{\log x}=x.}

Multiplying through by x,{x,} we obtain the equation:

xdydx+y=ddx(xy)=x3x\frac{dy}{dx}+y={\frac{d}{dx}\left(xy\right)}=x^{3}

Integrating both sides and dividing by xx, we obtain the general solution y=x34+cxy={\frac{x^{3}}{4}+\frac{c}{x}}, where cc is a constant.