Home page for accesible maths 4 Chapter 4 contents

Style control - access keys in brackets

Font (2 3) - + Letter spacing (4 5) - + Word spacing (6 7) - + Line spacing (8 9) - +

4.4 More stationary points

Example.

Find the stationary points of

f(x,y)=xe-(x2+y2).f(x,y)=xe^{-(x^{2}+y^{2})}.

Solution. We have

fx=e-(x2+y2)-2x2e-(x2+y2)andfy=-2xye-(x2+y2).\frac{\partial f}{\partial x}=\,{e^{-(x^{2}+y^{2})}-2x^{2}e^{-(x^{2}+y^{2})}}% \;\;\mbox{and}\;\;\frac{\partial f}{\partial y}=\,{-2xye^{-(x^{2}+y^{2})}.}

Thus fx=fy=0f_{x}=f_{y}=0 if and only if 1-2x2=-2xy=01-2x^{2}=-2xy=0. Therefore y= 0y=\,{0} and x=±12.x=\,{\pm\frac{1}{\sqrt{2}}.} Hence there are two stationary points: (±12,0)(\pm\frac{1}{\sqrt{2}},0) with corresponding values of f(x,y)=±12e-12.f(x,y)=\,{\pm\frac{1}{\sqrt{2}}e^{-\frac{1}{2}}.}