Home page for accesible maths 4 Chapter 4 contents

Style control - access keys in brackets

Font (2 3) - + Letter spacing (4 5) - + Word spacing (6 7) - + Line spacing (8 9) - +

4.3 Finding stationary points

Example.

To find the stationary points of

f(x,y)=x3+y3-3x-12y+20.f(x,y)=x^{3}+y^{3}-3x-12y+20.

Solution. We have fx= 3x2-3,\frac{\partial f}{\partial x}=\,{3x^{2}-3,} and fy= 3y2-12.\frac{\partial f}{\partial y}=\,{3y^{2}-12.} Thus the stationary points are given by x2= 1x^{2}=\,{1} and y2= 4.y^{2}=\,{4.} We therefore have four stationary points: (x,y)=(1,2), (1,-2), (-1,2), (-1,-2)(x,y)=\,{(1,2),\;(1,-2),\;(-1,2),\;(-1,-2)} with corresponding values of ff:

f(1,2)=2, f(1,-2)=34, f(-1,2)=6, f(-1,-2)=38.{f(1,2)=2,}\;\;{f(1,-2)=34,}\;\;{f(-1,2)=6,}\;\;{f(-1,-2)=38.}

In a few pages we will see how to determine whether any of these are local maxima or minima.