Home page for accesible maths 4 Chapter 4 contents

Style control - access keys in brackets

Font (2 3) - + Letter spacing (4 5) - + Word spacing (6 7) - + Line spacing (8 9) - +

4.13 Proof of the Discriminant Test

By Taylor’s Theorem, near to the stationary point PP we have an approximation

f(a+h,b+k)f(a,b)+12(h22fx2+2hk2fxy+k22fy2)Pf(a+h,b+k)\approx f(a,b)+{{1}\over{2}}\Bigl(h^{2}{{\partial^{2}f}\over{{% \partial x}^{2}}}+2hk{{\partial^{2}f}\over{{\partial x}{\partial y}}}+k^{2}{{% \partial^{2}f}\over{{\partial y}^{2}}}\Bigr)_{P}

which we can write as

f(a+h,b+k)f(a,b)+12(Ah2+2Bhk+Ck2)f(a+h,b+k)\approx f(a,b)+{{1}\over{2}}\bigl(Ah^{2}+2Bhk+Ck^{2}\bigr)

where

A=(2fx2)P, B=(2fxy)P, andC=(2fy2)P,A=\Bigl({{\partial^{2}f}\over{{\partial x}^{2}}}\Bigr)_{P},\quad B=\Bigl({{% \partial^{2}f}\over{{\partial x\partial y}}}\Bigr)_{P},\quad{\hbox{and}}\quad C% =\Bigl({{\partial^{2}f}\over{{\partial y}^{2}}}\Bigr)_{P},
Δ=AC-B2.\Delta=AC-B^{2}.