Home page for accesible maths 4 Chapter 4 contents

Style control - access keys in brackets

Font (2 3) - + Letter spacing (4 5) - + Word spacing (6 7) - + Line spacing (8 9) - +

4.12 Lemma on quadratic forms

Lemma.

Let Q(h,k)=Ah2+2Bhk+Ck2Q(h,k)=Ah^{2}+2Bhk+Ck^{2} and Δ=AC-B2\Delta=AC-B^{2}.

(i) If A>0A>0 and Δ>0\Delta>0, then Q(h,k)>0Q(h,k)>0 holds for all (h,k)0(h,k)\neq 0;

(ii) if A<0A<0 and Δ>0\Delta>0, then Q(h,k)<0Q(h,k)<0 holds for all (h,k)0(h,k)\neq 0;

(iii) if Δ<0\Delta<0, then QQ takes positive and negative values.

Brief proof. We have Q(h,k)=k2.(A(hk)2+2Bhk+C).Q(h,k)=k^{2}.\left(A\left(\frac{h}{k}\right)^{2}+2B\frac{h}{k}+C\right). Using the formula for the roots of a quadratic polynomial, we see that if (2B)2-4AC=-4Δ<0(2B)^{2}-4AC=-4\Delta<0 then the quadratic polynomial Ax2+2Bx+CAx^{2}+2Bx+C has no real roots, so is either always negative (if A<0A<0) or always positive (if A>0A>0). Setting x=hkx=\frac{h}{k} and multiplying by k2k^{2}, this proves (i) and (ii).

Finally, if Δ<0\Delta<0 (and A0A\neq 0) then Ax2+2Bx+CAx^{2}+2Bx+C has two distinct real roots, and so can have positive or negative values. Therefore so can Q(h,k)Q(h,k).