Home page for accesible maths 4 Chapter 4 contents

Style control - access keys in brackets

Font (2 3) - + Letter spacing (4 5) - + Word spacing (6 7) - + Line spacing (8 9) - +

4.10 Examples of the Hessian discriminant

Example.

Find the stationary points of f(x,y)=x2+xy-2y2-2f(x,y)=x^{2}+xy-2y^{2}-2 and calculate the Hessian discriminant at each stationary point.

Solution. We first calculate partial derivatives:

fx= 2x+y, fy=x-4y, fxx= 2, fxy= 1, fyy=-4.f_{x}=\,{2x+y,}\;\;f_{y}=\,{x-4y,}\;\;f_{xx}=\,{2,}\;\;f_{xy}=\,{1,}\;\;f_{yy}% =\,{-4.}

So the stationary points are given by 2x+y=x-4y=02x+y=x-4y=0, whence x=4yx=4y and y=-2x=-8yy=-2x=-8y so we get x=y=0x=y=0. Thus there is only one stationary point: (0,0)(0,0).

Now the Hessian discriminant is

fxxfyy-fxy2= 2.(-4)-12=-9.f_{xx}f_{yy}-f_{xy}^{2}=\,{2.(-4)-1^{2}=}\,{-9.}