Home page for accesible maths 3 Chapter 3 contents

Style control - access keys in brackets

Font (2 3) - + Letter spacing (4 5) - + Word spacing (6 7) - + Line spacing (8 9) - +

3.6 Rectifiable curves

Rectification is the old-fashioned name for working out arclength.

Example (Rectifiable curves).

Using the methods of this course, one can work out the integral for LL and find an explicit formula for arclength s(t)s(t) along the following curves:

𝑐𝑖𝑟𝑐𝑙𝑒  x2+y2=a2,{\hbox{circle}}\qquad x^{2}+y^{2}=a^{2},
𝑝𝑎𝑟𝑎𝑏𝑜𝑙𝑎  y2=4ax,{\hbox{parabola}}\qquad y^{2}=4ax,
Neil’s curve  y2=x3,{\hbox{Neil's curve}}\qquad y^{2}=x^{3},
Tsirnhausen’s cubic  3y2=x2(1-x),{\hbox{Tsirnhausen's cubic}}\qquad 3y^{2}=x^{2}(1-x),
𝑐𝑎𝑡𝑒𝑛𝑎𝑟𝑦  y=coshx,{\hbox{catenary}}\qquad y=\cosh x,
logarithmic spirals  r=aebθ(in polar coordinates),{\hbox{logarithmic spirals}}\qquad r=ae^{b\theta}\;{\hbox{(in polar % coordinates)}},
𝑎𝑠𝑡𝑟𝑜𝑖𝑑𝑠  |x|2/3+|y|2/3=1.{\hbox{astroids}}\qquad|x|^{2/3}+|y|^{2/3}=1.