Home page for accesible maths 3 Chapter 3 contents

Style control - access keys in brackets

Font (2 3) - + Letter spacing (4 5) - + Word spacing (6 7) - + Line spacing (8 9) - +

3.4 Parameters for circles

Example.

Let CC be the circle with diameter one and centre (1/2,0)(1/2,0), so that the yy–axis is tangent to CC. Find a parametric form for CC and the rate of change of (x(t),y(t))(x(t),y(t)) with respect to tt.

Solution. Since the circle has diameter 11, it has radius 12\frac{1}{2}. As the centre is (12,0)(\frac{1}{2},0), we can apply the parametrisation of the unit circle to the coordinates (2(x-12),2y)(2(x-\frac{1}{2}),2y). Using the statement in frame 3.2, we have:

x=12+121-t21+t2=121+t2+1-t21+t2=11+t2x=\,{\frac{1}{2}+\frac{1}{2}\frac{1-t^{2}}{1+t^{2}}}\,{=\frac{1}{2}\frac{1+t^{% 2}+1-t^{2}}{1+t^{2}}}\,{=\frac{1}{1+t^{2}}}
andy=122t1+t2=t1+t2.\mbox{and}\;\;y=\,{\frac{1}{2}\frac{2t}{1+t^{2}}}\,{=\frac{t}{1+t^{2}}.}