Home page for accesible maths 2 Chapter 2 contents

Style control - access keys in brackets

Font (2 3) - + Letter spacing (4 5) - + Word spacing (6 7) - + Line spacing (8 9) - +

2.8 Partial differentiation in more than two variables

We can carry out the same procedure for a function of more than two variables.

Example.

Let f(x,y,z)=x2+xyz2f(x,y,z)=x^{2}+xyz^{2} be a function of three variables. Find its partial derivatives.

Solution. We have

fx= 2x+yz2, fy=xz2, and\frac{\partial f}{\partial x}=\,{2x+yz^{2},}\;\;\frac{\partial f}{\partial y}=% \,{xz^{2},}\;\;\mbox{and}
fz= 2xyz.\frac{\partial f}{\partial z}=\,{2xyz.}