Home page for accesible maths 2 Chapter 2 contents

Style control - access keys in brackets

Font (2 3) - + Letter spacing (4 5) - + Word spacing (6 7) - + Line spacing (8 9) - +

2.7 Differentiating using calculus rules

Example.

To find fx{{\partial f}\over{\partial x}} and fy{{\partial f}\over{\partial y}} for f(x,y)=(x2+xy)sin(y2+xy).f(x,y)=(x^{2}+xy)\sin(y^{2}+xy).

Solution. To calculate fx\frac{\partial f}{\partial x}, think of yy as constant, say y=by=b. Then f(x,b)=(x2+bx)sin(bx+b2)f(x,b)=(x^{2}+bx)\sin(bx+b^{2}). So, by the product rule:

fx=(2x+b)sin(bx+b2)+b(x2+bx)cos(bx+b2)\frac{\partial f}{\partial x}=\,{(2x+b)\sin(bx+b^{2})+b(x^{2}+bx)\cos(bx+b^{2})}
=(2x+y)sin(xy+y2)+y(x2+xy)cos(xy+y2).{=(2x+y)\sin(xy+y^{2})+y(x^{2}+xy)\cos(xy+y^{2}).}

Similarly, setting x=ax=a: fy=(ay+a2)sin(y2+ay)+(ay+a2)(sin(y2+ay))\frac{\partial f}{\partial y}=\,{(ay+a^{2})^{\prime}\sin(y^{2}+ay)+(ay+a^{2})(% \sin(y^{2}+ay))^{\prime}}

=xsin(x2+xy)+(x+2y)(x2+xy)cos(x2+xy).={x\sin(x^{2}+xy)+(x+2y)(x^{2}+xy)\cos(x^{2}+xy).}