Home page for accesible maths 12 Numerical answers to tests

Style control - access keys in brackets

Font (2 3) - + Letter spacing (4 5) - + Word spacing (6 7) - + Line spacing (8 9) - +

12.5 Answers to 2011 test

2. For the partial fractions, we have 1(x+2)(5x+5)=16(55x+4-1x+2)\frac{1}{(x+2)(5x+5)}=\frac{1}{6}\left(\frac{5}{5x+4}-\frac{1}{x+2}\right). The indefinite integral

dx(x+2)(5x+4)=16log(5x+4x+2)+c.\int\frac{dx}{(x+2)(5x+4)}=\frac{1}{6}\log\left(\frac{5x+4}{x+2}\right)+c.

Then the integral 0dx(x+2)(5x+4)\int_{0}^{\infty}\frac{dx}{(x+2)(5x+4)} converges to 16log(52)\frac{1}{6}\log\left(\frac{5}{2}\right).

3. The Laplace transform of coshax\cosh ax is ss2-a2\frac{s}{s^{2}-a^{2}}.

4. i) dydx=sint1-cost=cott2\frac{dy}{dx}=\frac{\sin t}{1-\cos t}=\cot\frac{t}{2}.

ii) L=8L=8. (Note dxdt2+dydt2=2-2cost=4sin2t2\frac{dx}{dt}^{2}+\frac{dy}{dt}^{2}=2-2\cos t=4\sin^{2}\frac{t}{2}.)

5. There are four stationary points at (2+72,2+72)(2+\sqrt{\frac{7}{2}},2+\sqrt{\frac{7}{2}}), (2-72,2-72)(2-\sqrt{\frac{7}{2}},2-\sqrt{\frac{7}{2}}), (2+322,-2-322)(2+\frac{3\sqrt{2}}{2},-2-\frac{3\sqrt{2}}{2}), (2-322,-2+322)(2-\frac{3\sqrt{2}}{2},-2+\frac{3\sqrt{2}}{2}). (Finding these stationary points was covered in the lecture on Friday of week 8, but not determining their nature.) When x2=y2x^{2}=y^{2} we have Δ=8x(2-x)\Delta=8x(2-x) and so, since x>2x>2 or x<0x<0 at each stationary point, they are all saddles except for (2-72,2-72)(2-\sqrt{\frac{7}{2}},2-\sqrt{\frac{7}{2}}), which is a local minimum.