Home page for accesible maths 10 Homework and quiz solutions

Style control - access keys in brackets

Font (2 3) - + Letter spacing (4 5) - + Word spacing (6 7) - + Line spacing (8 9) - +

10.2 Quiz 1 solutions

Q1.1 The answer is D. To evaluate the integral we substitute u=1+x2u=\sqrt{1+x^{2}}, so that dudx=122x(1+x2)-12=x1+x2\frac{du}{dx}=\frac{1}{2}\cdot 2x\cdot(1+x^{2})^{-\frac{1}{2}}=\frac{x}{\sqrt{% 1+x^{2}}}. The bounds change as follows: u=1u=1 when x=0x=0, and u=2u=\sqrt{2} when x=1x=1. So I=12eudu=[eu]12=e2-eI=\int_{1}^{\sqrt{2}}e^{u}\,du=[e^{u}]_{1}^{\sqrt{2}}=e^{\sqrt{2}}-e.

Q1.2. The answer is B. To evaluate the integral we substitute t=tanx2t=\tan\frac{x}{2}, see slide 1.32 in the notes. Then dxdt=21+t2\frac{dx}{dt}=\frac{2}{1+t^{2}}, sinx=2t1+t2\sin x=\frac{2t}{1+t^{2}}, cosx=1-t21+t2\cos x=\frac{1-t^{2}}{1+t^{2}} and the limits of integration change as: t=1t=1 when x=π2x=\frac{\pi}{2}, t=-1t=-1 when x=-π2x=-\frac{\pi}{2}. So

J=-1121+t2dt21-t21+t2+2t1+t2+3=-112dt2(1-t2)+2t+3(1+t2)=-112dtt2+2t+5=-112dt(t+1)2+4J=\int_{-1}^{1}\frac{\frac{2}{1+t^{2}}\,dt}{2\frac{1-t^{2}}{1+t^{2}}+\frac{2t}% {1+t^{2}}+3}=\int_{-1}^{1}\frac{2\,dt}{2(1-t^{2})+2t+3(1+t^{2})}=\int_{-1}^{1}% \frac{2\,dt}{t^{2}+2t+5}=\int_{-1}^{1}\frac{2\,dt}{(t+1)^{2}+4}

which we can solve by the further substitution u=t+12u=\frac{t+1}{2}, so that dtdu=2\frac{dt}{du}=2 and the limits of integration change as: u=0u=0 when t=-1t=-1, u=1u=1 when t=1t=1, therefore:

J=014du4u2+4=01duu2+1=[tan-1u]01=tan-11-tan-10=π4.J=\int_{0}^{1}\frac{4\,du}{4u^{2}+4}=\int_{0}^{1}\frac{du}{u^{2}+1}=\left[\tan% ^{-1}u\right]_{0}^{1}=\tan^{-1}1-\tan^{-1}0=\frac{\pi}{4}.

Q1.3 The answer is A. We substitute x=sintx=\sin t, so the bounds change as: t=0t=0 when x=0x=0 and t=π4t=\frac{\pi}{4} when x=12x=\frac{1}{\sqrt{2}}. Then dxdt=cost\frac{dx}{dt}=\cos t and 1-x2=1-sin2t=|cost|\sqrt{1-x^{2}}=\sqrt{1-\sin^{2}t}=|\cos t|. We have cost>0\cos t>0 for 0tπ40\leq t\leq\frac{\pi}{4}, so (1-x2)32=cos3t(1-x^{2})^{\frac{3}{2}}=\cos^{3}t. Thus K=0π4costdtcos3t=0π4sec2tdt=[tant]0π4=1K=\int_{0}^{\frac{\pi}{4}}\frac{\cos t\,dt}{\cos^{3}t}=\int_{0}^{\frac{\pi}{4}% }\sec^{2}t\,dt=\left[\tan t\right]_{0}^{\frac{\pi}{4}}=1.

Q1.4 The answer is B. The other commands are respectively:

(A) tan-1xlog3y\tan^{-1}x\leq\log\frac{3}{y} or tan-1xsinhz\tan^{-1}x\leq\sinh z;

(C) tan-1xlog3y\tan^{-1}x\geq\log\frac{3}{y} and tan-1xsinhz\tan^{-1}x\geq\sinh z;

(D) tan-1xlog3y\tan^{-1}x\geq\log\frac{3}{y} or tan-1xsinhz\tan^{-1}x\geq\sinh z;

(E) cotxlog3y\cot x\geq\log\frac{3}{y} and cotxsinhz\cot x\geq\sinh z.

(In (E), don’t be misled by the slightly confusing notation for trigonometric functions: tan2x=(tanx)2\tan^{2}x=(\tan x)^{2}, but tan-1x(tanx)-1\tan^{-1}x\neq(\tan x)^{-1}.)

Q1.5 The answer is 53. The following code, for example, will give you this answer.

x <- seq(1:100)

y <- sin(3*x*pi/44)

condition <- y > 0.1

length(y[condition])