Home page for accesible maths 10 Homework and quiz solutions

Style control - access keys in brackets

Font (2 3) - + Letter spacing (4 5) - + Word spacing (6 7) - + Line spacing (8 9) - +

10.1 Solutions to Assessed Exercises 1

A1.1 i) Clearly g(x)g(x) is divisible by xx. Furthermore we have g(-2)=16-16+16-16=0g(-2)=16-16+16-16=0, so g(x)g(x) is also divisible by (x+2)(x+2). Dividing through, we find that g(x)=x(x+2)(x2+4)g(x)=x(x+2)(x^{2}+4). Clearly x2+4x^{2}+4 is irreducible, so we have obtained the required factorization. [1]

ii) Using our answer to (i), we have to express x3+5x2-6x+8x4+2x3+4x2+8x\frac{x^{3}+5x^{2}-6x+8}{x^{4}+2x^{3}+4x^{2}+8x} in the form

Ax+Bx+2+Cx+Dx2+4.\frac{A}{x}+\frac{B}{x+2}+\frac{Cx+D}{x^{2}+4}.

Multiplying through by g(x)g(x), we have

A(x+2)(x2+4)+Bx(x2+4)+(Cx+D)x(x+2)=x3+5x2-6x+8.(*)A(x+2)(x^{2}+4)+Bx(x^{2}+4)+(Cx+D)x(x+2)=x^{3}+5x^{2}-6x+8.\;\;\;\mbox{(*)}

We can use the trick of setting x=0x=0 to obtain the value of AA, and we can set x=-2x=-2 to obtain the value of BB. (This trick will not help us to find the values of CC and DD.) Setting x=0x=0, we have 8A=88A=8 and therefore A=1A=1. Setting x=-2x=-2, we obtain -16B=-8+20+12+8=32-16B=-8+20+12+8=32, so B=-2B=-2. To obtain CC and DD we can either equate the coefficients of xx and x2x^{2}, or we can subtract A(x+2)(x2+4)+Bx(x2+4)A(x+2)(x^{2}+4)+Bx(x^{2}+4) from both sides of (*). Using the latter argument, we see that

(Cx+D)x(x+2)=x3+5x2-6x+8-(x+2)(x2+4)+2x(x2+4)=2x3+3x2-2x=(2x-1)x(x+2).(Cx+D)x(x+2)=x^{3}+5x^{2}-6x+8-(x+2)(x^{2}+4)+2x(x^{2}+4)=2x^{3}+3x^{2}-2x=(2x% -1)x(x+2).

Thus Cx+D=x(x+2)Cx+D=x(x+2). (If equating coefficients, then we see that the coefficient of xx on the left-hand side of (*) is 4A+4B+2D=2D-44A+4B+2D=2D-4, so that D=-1D=-1, and the coefficient of x2x^{2} on the left-hand side of (*) is 2A+2C+D=2C+12A+2C+D=2C+1, so that C=2C=2.)

(Total [3] marks for the partial fractions step: 2 marks if mostly correct with one or two minor errors; at most 1 mark if the CxCx term is omitted from the partial fractions expression to be obtained.)

Now we integrate:

23/323x3+5x2-6x+8x4+2x3+4x2+8xdx=23/323(1x-2x+2+2x-1x2+4)dx.\int_{2\sqrt{3}/3}^{2\sqrt{3}}\frac{x^{3}+5x^{2}-6x+8}{x^{4}+2x^{3}+4x^{2}+8x}% \,dx=\int_{2\sqrt{3}/3}^{2\sqrt{3}}\left(\frac{1}{x}-\frac{2}{x+2}+\frac{2x-1}% {x^{2}+4}\right)\,dx.

The integral of the first term is [log|x|]23/323=log(2323/3)=log3\left[\log|x|\right]_{2\sqrt{3}/3}^{2\sqrt{3}}=\log\left(\frac{2\sqrt{3}}{2% \sqrt{3}/3}\right)=\log 3. The integral of the second term is -2[log|x+2|]23/323=-2log23+223/3+2=-2log3=-log3-2\left[\log|x+2|\right]_{2\sqrt{3}/3}^{2\sqrt{3}}=-2\log\frac{2\sqrt{3}+2}{2% \sqrt{3}/3+2}=-2\log\sqrt{3}=-\log 3.

For the third term, we need to make two different substitutions to integrate the 2xx2+4\frac{2x}{x^{2}+4} and -1x2+4\frac{-1}{x^{2}+4} terms separately. Substituting u=x2+4u=x^{2}+4 for the first of these, we obtain 23/3232xdxx2+4=[log(x2+4)]23/323=log1616/3=log3\int_{2\sqrt{3}/3}^{2\sqrt{3}}\frac{2x\,dx}{x^{2}+4}=\left[\log(x^{2}+4)\right% ]_{2\sqrt{3}/3}^{2\sqrt{3}}=\log\frac{16}{16/3}=\log 3. Finally, substituting x=2tantx=2\tan t, we have

23/323-dxx2+4=-12[tan-1x2]23/323=-12(tan-13-tan-132)=-12(π3-π6)=-π12.\int_{2\sqrt{3}/3}^{2\sqrt{3}}\frac{-dx}{x^{2}+4}=-\frac{1}{2}\left[\tan^{-1}% \frac{x}{2}\right]_{2\sqrt{3}/3}^{2\sqrt{3}}=-\frac{1}{2}\left(\tan^{-1}\sqrt{% 3}-\tan^{-1}\frac{\sqrt{3}}{2}\right)=-\frac{1}{2}\left(\frac{\pi}{3}-\frac{% \pi}{6}\right)=-\frac{\pi}{12}.

Summing the terms, the value of the integral is log3-π12\log 3-\frac{\pi}{12}.

(Total [3] marks for the integration step: 12\frac{1}{2} for the integral of each of the terms 1x\frac{1}{x}, -2x+2\frac{-2}{x+2}, 2xx2+4\frac{2x}{x^{2}+4}, -1x2+4\frac{-1}{x^{2}+4} and 11 for the sum.)

A1.2 We have x=asinhux=a\sinh u, so dxdu=acoshu{{dx}\over{du}}=a\cosh u and a2+x2=a2(1+sinh2u)=a2cosh2ua^{2}+x^{2}=a^{2}(1+\sinh^{2}u)=a^{2}\cosh^{2}u; let t=asinhvt=a\sinh v for simplicity. Then, using the identities in the question, we have

0t(a2+x2)1/2dx=0va2cosh2udu=a220v(1+cosh2u)du\int_{0}^{t}(a^{2}+x^{2})^{1/2}dx=\int_{0}^{v}a^{2}\cosh^{2}u\,du={{a^{2}}% \over{2}}\int_{0}^{v}(1+\cosh 2u)\,du
=a22[u+12sinh2u]0v=a22(v+12sinh2v)=a22(v+sinhvcoshv)={{a^{2}}\over{2}}\Bigl[u+{{1}\over{2}}\sinh 2u\Bigr]_{0}^{v}={{a^{2}}\over{2}% }\Bigl(v+{{1}\over{2}}\sinh 2v\Bigr)={{a^{2}}\over{2}}\Bigl(v+\sinh v\cosh v\Bigr)
=a22(v+ta(1+t2a2)1/2)=a2v2+12ta2+t2=a22sinh-1ta+12ta2+t2.={{a^{2}}\over{2}}\Bigl(v+{{t}\over{a}}\Bigl(1+{{t^{2}}\over{a^{2}}}\Bigr)^{1/% 2}\Bigr)={{a^{2}v}\over{2}}+{{1}\over{2}}t\sqrt{a^{2}+t^{2}}={{a^{2}}\over{2}}% \sinh^{-1}{{t}\over{a}}+{{1}\over{2}}t\sqrt{a^{2}+t^{2}}.

(Total [3] marks: 1 for making the substitution correctly, 1 for getting the indefinite integral right (i.e. obtaining a22(v+12sinh2v)\frac{a^{2}}{2}(v+\frac{1}{2}\sinh 2v)) and 1 for evaluating. Only lose half a mark for failing to simplify sinh(2sinh-1ta)\sinh(2\sinh^{-1}\frac{t}{a}).)