Home page for accesible maths 1 1 Further Integration

Style control - access keys in brackets

Font (2 3) - + Letter spacing (4 5) - + Word spacing (6 7) - + Line spacing (8 9) - +

1.8 Quadratic factor q(x)=x2+2bx+c.q(x)=x^{2}+2bx+c.

(i) If b2>cb^{2}>c, then there are distinct real roots

α=-b+b2-c,  β=-b-b2-c\alpha=-b+\sqrt{b^{2}-c},\qquad\beta=-b-\sqrt{b^{2}-c}

and the quadratic reduces to a product of real linear factors

x2+2bx+c=(x-α)(x-β).x^{2}+2bx+c=(x-\alpha)(x-\beta).

(ii) If b2=cb^{2}=c, then there is a double real root

α=β=-b\alpha=\beta=-b

and the quadratic factors reduces to

x2+2bx+c=(x-β)2.x^{2}+2bx+c=(x-\beta)^{2}.

(iii) If b2<cb^{2}<c, then the quadratic has no real roots and is irreducible.