Home page for accesible maths 1 1 Further Integration

Style control - access keys in brackets

Font (2 3) - + Letter spacing (4 5) - + Word spacing (6 7) - + Line spacing (8 9) - +

1.62 Laplace transforms of hyperbolic functions

Example.

1.62.1 The Laplace transform of sinhax\sinh ax is

H(s)=as2-a2  (s>|a|).H(s)={{a}\over{s^{2}-a^{2}}}\qquad(s>|a|).

Indeed, we have 0eaxe-sxdx=1s-a\int_{0}^{\infty}e^{ax}e^{-sx}\,dx={\frac{1}{s-a}} and 0e-axe-sxdx=1s+a\int_{0}^{\infty}e^{-ax}e^{-sx}\,dx={\frac{1}{s+a}} by our assumption on aa, hence H(s)=12(1s-a-1s+a)=12s+a-(s-a)(s-a)(s+a).H(s)={\frac{1}{2}(\frac{1}{s-a}-\frac{1}{s+a})}\,{=\frac{1}{2}\frac{s+a-(s-a)}% {(s-a)(s+a)}.}

Example.

1.62.2 Question: What is the Laplace transform of coshax\cosh ax?

Remark. The Laplace transforms of sin,cos,sinh\sin,\cos,\sinh and cosh\cosh are all rational functions.