Home page for accesible maths 1 1 Further Integration

Style control - access keys in brackets

Font (2 3) - + Letter spacing (4 5) - + Word spacing (6 7) - + Line spacing (8 9) - +

1.56 Example

Example.

The integral 01dxx(1+x2)\int_{0}^{1}{{dx}\over{x(1+x^{2})}} diverges.

Solution. We simplify the integral using partial fractions:

1x(1+x2)=Ax+Bx+Cx2+1{\frac{1}{x(1+x^{2})}=\frac{A}{x}+\frac{Bx+C}{x^{2}+1}}

where A(x2+1)+(Bx+C)x=1A(x^{2}+1)+(Bx+C)x=1, so that A=1A=1, B=-1B=-1 and C=0C=0. Thus

δ1dxx(1+x2)=δ1(1x-x1+x2)dx=[logx-12log(1+x2)]δ1\int_{\delta}^{1}\frac{dx}{x(1+x^{2})}={\int_{\delta}^{1}\left(\frac{1}{x}-% \frac{x}{1+x^{2}}\right)dx}{\,=\left[\log x-\frac{1}{2}\log(1+x^{2})\right]_{% \delta}^{1}}
=-12log2-logδ+12log(1+δ2).{=-\frac{1}{2}\log 2-\log\delta+\frac{1}{2}\log(1+\delta^{2}).}

Since every term except logδ\log\delta converges as δ0\delta\rightarrow 0, the integral diverges.