Home page for accesible maths 1 1 Further Integration

Style control - access keys in brackets

Font (2 3) - + Letter spacing (4 5) - + Word spacing (6 7) - + Line spacing (8 9) - +

1.42 Integrals over infinite ranges

Example.

1.42.1 0e-xdx=1.\int_{0}^{\infty}e^{-x}\,dx=1.

Solution. We have 0Re-xdx=\int_{0}^{R}e^{-x}\,dx= [-e-x]0R=1-e-R[-e^{-x}]_{0}^{R}=1-e^{-R} 1\rightarrow 1 as RR\rightarrow\infty.

Example.

1.42.2 The integral 1x-sdx=1/(s-1)\int_{1}^{\infty}x^{-s}\,dx=1/(s-1) converges for s>1s>1; whereas for s1s\leq 1 the integral diverges.

Solution. We have 1Rx-sdx=\int_{1}^{R}x^{-s}\,dx= [-x1-ss-1]1R=1-1Rs-1s-1[-\frac{x^{1-s}}{s-1}]_{1}^{R}=\frac{1-\frac{1}{R^{s-1}}}{s-1}.

For s>1s>1: 1Rs-10\frac{1}{R^{s-1}}\rightarrow 0 as RR\rightarrow\infty, hence the integral converges to 1s-1\frac{1}{s-1}.

If s<1s<1, then 1Rs-1\frac{1}{R^{s-1}}\rightarrow\infty as RR\rightarrow\infty, so the integral diverges.

Finally: 1Rx-1dx=\int_{1}^{R}x^{-1}\,dx= [|logx|]1R[|\log x|]_{1}^{R} =logR-log1=\log R-\log 1\rightarrow\infty as RR\rightarrow\infty.