Home page for accesible maths 1 1 Further Integration

Style control - access keys in brackets

Font (2 3) - + Letter spacing (4 5) - + Word spacing (6 7) - + Line spacing (8 9) - +

1.39 Useful identities

cosh2u-1=sinh2u,  sec2u=1+tan2u,\cosh^{2}u-1=\sinh^{2}u,\qquad\sec^{2}u=1+\tan^{2}u,
cosu=±11+tan2u,  sinu=±tanu1+tan2u.\cos u={{\pm 1}\over{\sqrt{1+\tan^{2}u}}},\qquad\sin u={{\pm\tan u}\over{\sqrt% {1+\tan^{2}u}}}.

Consider the right-angled triangle with angle uu that has adjacent 11, opposite xx and hypotenuse 1+x2\sqrt{1+x^{2}}.

Then tanu=x\tan u=x, sinu=x/1+x2\sin u=x/\sqrt{1+x^{2}} , cosu=1/1+x2\cos u=1/\sqrt{1+x^{2}}.

Trigonometric or hyperbolic? The choice partly depends upon the user’s preference; but some substitutions can make an integral more difficult. If a substitution does not help, then try another one.