Home page for accesible maths 1 1 Further Integration

Style control - access keys in brackets

Font (2 3) - + Letter spacing (4 5) - + Word spacing (6 7) - + Line spacing (8 9) - +

1.23 Complete example

Example.

Evaluate

3x2+7(x-1)(x2+9)dx.\int\frac{3x^{2}+7}{(x-1)(x^{2}+9)}\,dx.

We first express the rational function in terms of partial fractions: we want

3x2+7(x-1)(x2+9)=Ax-1+Bx+Cx2+9\frac{3x^{2}+7}{(x-1)(x^{2}+9)}={\frac{A}{x-1}+\frac{Bx+C}{x^{2}+9}}

and hence A(x2+9)+(Bx+C)(x-1)=3x2+7A(x^{2}+9)+(Bx+C)(x-1)=3x^{2}+7. Evaluating at x=1x=1, we obtain: 10A=10{10A=10} and hence A=1.{A=1.} For BB and CC the evaluation trick doesn’t work, so we have to equate coefficients. Subtracting A(x2+9)A(x^{2}+9) from each side, we get:

(Bx+C)(x-1)=2x2-2=(2x+2)(x-1)B=C=2.(Bx+C)(x-1)={2x^{2}-2=}\,{(2x+2)(x-1)\;\;\Rightarrow B=C=2.}