Home page for accesible maths 1 1 Further Integration

Style control - access keys in brackets

Font (2 3) - + Letter spacing (4 5) - + Word spacing (6 7) - + Line spacing (8 9) - +

1.21 Example involving a quadratic

Example.

Find

4x+1x2+4dx\int\frac{4x+1}{x^{2}+4}\,dx

We split the integral into the separate terms 4xx2+4dx\int\frac{4x}{x^{2}+4}\,dx and 1x2+4dx\int\frac{1}{x^{2}+4}\,dx. For the first integral we make the substitution u=x2+4.u={x^{2}+4.} Then the first integral becomes

4xdxx2+4=2duu= 2log|u|+c=2log(x2+4)+c.\int\frac{4x\,dx}{x^{2}+4}={\int\frac{2\,du}{u}=\,}{2\log|u|+c=2\log(x^{2}+4)+% c.}

For the second integral we substitute x=2tant,x={2\tan t,} obtaining

1dxx2+4=2sec2tdt4sec2t=12t+c=12tan-1x2+c.\int\frac{1\,dx}{x^{2}+4}={\int\frac{2\sec^{2}t\,dt}{4\sec^{2}t}=\frac{1}{2}t+% c^{\prime}=\frac{1}{2}\tan^{-1}\frac{x}{2}+c^{\prime}.}