Home page for accesible maths Math 101 Chapter 4: Taylor series and complex numbers

Style control - access keys in brackets

Font (2 3) - + Letter spacing (4 5) - + Word spacing (6 7) - + Line spacing (8 9) - +

4.32 Real quadratic equation

Proposition

Let a,b,ca,b,c be real with a>0a>0. Then the roots of

az2+bz+c=0az^{2}+bz+c=0

are given by one of the following cases:

(i) if b2-4ac>0b^{2}-4ac>0, then there is a pair of distinct real roots

z=-b±b2-4ac2az={{-b\pm\sqrt{b^{2}-4ac}}\over{2a}}

(ii) if b2-4ac=0b^{2}-4ac=0, then there is a double real root;

(iii) if b2-4ac<0b^{2}-4ac<0, then there is a pair of complex conjugate roots

α±iβ=-b±i4ac-b22a.\alpha\pm i\beta={{-b\pm i\sqrt{4ac-b^{2}}}\over{2a}}.