Home page for accesible maths Math 101 Chapter 4: Taylor series and complex numbers

Style control - access keys in brackets

Font (2 3) - + Letter spacing (4 5) - + Word spacing (6 7) - + Line spacing (8 9) - +

4.31 Dividing complex numbers

Complex fractions

(i) Do not divide by 00 under any circumstances!

(ii) To simplify a complex fraction z/wz/w, multiply by w¯/w¯\bar{w}/\bar{w}.

(iii) If z0z\neq 0, then zz has an inverse for multiplication. Observe that z=x+iyz=x+iy has conjugate z¯=x-iy\bar{z}=x-iy, so

zz¯=(x+iy)(x-iy)=x2+y2.z\bar{z}=(x+iy)(x-iy)=x^{2}+y^{2}.

Suppose that x2+y20;x^{2}+y^{2}\neq 0; then

z-1=1x+iy=x-iyx2+y2z^{-1}={{1}\over{x+iy}}={{x-iy}\over{x^{2}+y^{2}}}

satisfies z-1z=1z^{-1}z=1.

Example. To find 1/(2+3i)1/(2+3i).