Observe the sequence (in)=(i,-1,-i,1,…).(i^{n})=(i,-1,-i,1,\dots).
The notation -1\sqrt{-1} is ugly and unnecessary: use ii instead; some engineers prefer jj.
Note that z=z¯z=\bar{z} if and only if zz is real.
2ℜz=z+z¯2\Re z=z+\bar{z}; 2iℑz=z-z¯2i\Im z=z-\bar{z}
Let z=1+2iz=1+2i and w=2+3iw=2+3i; find z+wz+w and zwzw.