Home page for accesible maths Math 101 Chapter 4: Taylor series and complex numbers

Style control - access keys in brackets

Font (2 3) - + Letter spacing (4 5) - + Word spacing (6 7) - + Line spacing (8 9) - +

4.24 xlogxx\log x

4.24 Example

To determine the nature of the stationary point of the function

f(x)=xlogx  (x>0)f(x)=x\log x\qquad(x>0)

and sketch its graph.

Solution. We compute the derivative by the product rule

f(x)=xlogxf(x)=x\log x
f(x)=logx+1;f^{\prime}(x)=\log x+1;
f′′(x)=1/x.f^{\prime\prime}(x)=1/x.

Now the stationary point occurs where f(x)=0f^{\prime}(x)=0; that is, logx=-1\log x=-1, so x=1/ex=1/e, and f(1/e)=-1/ef(1/e)=-1/e and f′′(1/e)=e>0.f^{\prime\prime}(1/e)=e>0. Hence there is a local minimum at (1/e,-1/e).(1/e,-1/e).