Home page for accesible maths Math 101 Chapter 2: Functions of a real variable

Style control - access keys in brackets

Font (2 3) - + Letter spacing (4 5) - + Word spacing (6 7) - + Line spacing (8 9) - +

2.22 Exponential growth

(iv) For x>0x>0, all the terms in the series

exp(x)=1+x+x22!+x33!+x44!+\exp(x)=1+x+{{x^{2}}\over{2!}}+{{x^{3}}\over{3!}}+{{x^{4}}\over{4!}}+\dots

are positive, so

exp(x)1+x;\exp(x)\geq 1+x;

hence exp(x)\exp(x)\rightarrow\infty as xx\rightarrow\infty. Now let u=-xu=-x, so u-u\rightarrow-\infty as xx\rightarrow\infty and

expu=exp(-x)=1/exp(x)0.\exp u=\exp(-x)=1/\exp(x)\rightarrow 0.