Home page for accesible maths Math 101 Chapter 2: Functions of a real variable

Style control - access keys in brackets

Font (2 3) - + Letter spacing (4 5) - + Word spacing (6 7) - + Line spacing (8 9) - +

2.21 Proof of power law

(iii) First suppose that q=1q=1 and work out successive cases

exp(1)=e=e1;exp(2)=exp(1+1)=exp(1)exp(1)=ee=e2;\exp(1)=e=e^{1};\exp(2)=\exp(1+1)=\exp(1)\exp(1)=ee=e^{2};
exp(3)=exp(1+2)=exp(1)exp(2)=ee2=e3;\exp(3)=\exp(1+2)=\exp(1)\exp(2)=ee^{2}=e^{3};
exp(4)=exp(1+3)=exp(1)exp(3)=ee3=e4;\exp(4)=\exp(1+3)=\exp(1)\exp(3)=ee^{3}=e^{4};

and we continue until we reach exp(p)=ep.\exp(p)=e^{p}.

Now suppose that p,qp,q are natural integers; then by repeating the previous argument, we can show that

(expp/q)q=exp(p)=ep;(\exp p/q)^{q}=\exp(p)=e^{p};

now take qthq^{th} roots to get

exp(p/q)=ep/q.\exp(p/q)=e^{p/q}.

For q<0q<0, we can use (ii).