Home page for accesible maths Math 101 Venue for MATH101 Calculus Test 2016

Style control - access keys in brackets

Font (2 3) - + Letter spacing (4 5) - + Word spacing (6 7) - + Line spacing (8 9) - +

Question 3

3. (i) State the general formula for the Maclaurin series of a function f(x)f(x).

(ii) Prove by induction the formula

dndxnlog(1+x)=(-1)n-1(n-1)!(1+x)n,{{d^{n}}\over{dx^{n}}}\log(1+x)={{(-1)^{n-1}(n-1)!}\over{(1+x)^{n}}},

for -1<x<1-1<x<1 and all integers n=1,2,n=1,2,\dots.

(iii) Hence or otherwise obtain the Maclaurin series for f(x)=log(1+x)f(x)=\log(1+x).

[12]