Home page for accesible maths Math 101 Chapter 1: Sequences and Series

Style control - access keys in brackets

Font (2 3) - + Letter spacing (4 5) - + Word spacing (6 7) - + Line spacing (8 9) - +

1.23 Binomial Theorem

(nk)=(kthentry in rown){{n}\choose{k}}=(k^{th}\quad{\hbox{entry in row}}\quad n)

where the entries in the array are given by the recurrence relation

(nk)+(nk+1)=(n+1k+1).{{n}\choose{k}}+{{n}\choose{k+1}}={{n+1}\choose{k+1}}.

Theorem

Let nn\, be a positive integer. Then

(1+X)n=1+(n1)X+(n2)X2++(nn)Xn,(1+X)^{n}=1+{{n}\choose{1}}X+{{n}\choose{2}}X^{2}+\dots+{{n}\choose{n}}X^{n}, P_{n}

where the binomial coefficients are given by the nthn^{th} row of Pascal’s triangle.