Home page for accesible maths Math 101 Chapter 1: Sequences and Series

Style control - access keys in brackets

Font (2 3) - + Letter spacing (4 5) - + Word spacing (6 7) - + Line spacing (8 9) - +

1.19 The sum of squares

Example

To prove that

12+22+32++n2=6-1n(n+1)(2n+1)1^{2}+2^{2}+3^{2}+\dots+n^{2}=6^{-1}n(n+1)(2n+1)

holds for all positive integers nn\,.

Proof by induction. Let P(n)P(n)\, be the statement

P(n):12+22+32++n2=6-1n(n+1)(2n+1).P(n):\quad 1^{2}+2^{2}+3^{2}+\dots+n^{2}=6^{-1}n(n+1)(2n+1).

(i) Basis of induction: P(1)P(1)\, asserts that 12=6-1×1×2×31^{2}=6^{-1}\times 1\times 2\times 3\,, which is true.