Home page for accesible maths Math 101 Chapter 1: Sequences and Series

Style control - access keys in brackets

Font (2 3) - + Letter spacing (4 5) - + Word spacing (6 7) - + Line spacing (8 9) - +

1.17 Induction step

(ii) Suppose that P(n)P(n)\, holds for some integer n1n\geq 1\,, and consider P(n+1)P(n+1)\,. We have

1+2+3++n+(n+1)=(1+2+3++n)+(n+1),1+2+3+\dots+n+(n+1)=\bigl(1+2+3+\dots+n\bigr)+(n+1),

and by the assumption P(n)P(n)\,, this is

1+2+3++n+(n+1)=2-1n(n+1)+(n+1)1+2+3+\dots+n+(n+1)=2^{-1}n(n+1)+(n+1)
=(n+1)(2-1n+1)=(n+1)(2^{-1}n+1)
=2-1(n+1)(n+2);=2^{-1}(n+1)(n+2);

that is, P(n+1)P(n+1)\, holds.

Hence P(n)P(n)\, holds for all positive integers nn\, by induction.