Home page for accesible maths Math 101 Chapter 1: Sequences and Series

Style control - access keys in brackets

Font (2 3) - + Letter spacing (4 5) - + Word spacing (6 7) - + Line spacing (8 9) - +

1.14 Induction

We are concerned here with statements about a positive integer nn\,. The statement

1+2+3++n=2-1n(n+1)1+2+3+\dots+n=2^{-1}n(n+1)

is a statement about an integer nn\,. For instance, when n=3n=3\, it asserts that

1+2+3=2-134;1+2+3=2^{-1}\cdot 3\cdot 4;

when n=7n=7\,, it asserts that

1+2+3++7=2-178.1+2+3+\dots+7=2^{-1}\cdot 7\cdot 8.

We write

P(n):  1+2+3++n=2-1n(n+1),P(n):\quad\quad 1+2+3+\dots+n=2^{-1}n(n+1),

where n1n\geq 1\, is an integer. Instead of checking each case, we want a means of proving every case systematically – this is provided by the induction machine.