
Data & Knowledge Engineering xxx (2013) xxx–xxx

DATAK-01408; No of Pages 15

Contents lists available at SciVerse ScienceDirect

Data & Knowledge Engineering

j ourna l homepage: www.e lsev ie r .com/ locate /datak
Trust-based specification of sociotechnical systems

Elda Paja a,⁎, Amit K. Chopra b, Paolo Giorgini a

a Department of Information Engineering and Computer Science, University of Trento, Italy
b School of Computing and Communications, Lancaster University, United Kingdom
a r t i c l e i n f o
⁎ Corresponding author. Tel.: +39 329 88 234 35.
E-mail addresses: elda.paja@unitn.it (E. Paja), a.ch

0169-023X/$ – see front matter © 2012 Elsevier B.V. A
http://dx.doi.org/10.1016/j.datak.2012.12.005

Please cite this article as: E. Paja, et al., Trust
http://dx.doi.org/10.1016/j.datak.2012.12.0
a b s t r a c t
Article history:
Accepted 25 September 2012
Available online xxxx
Current approaches in sociotechnical systems consider trust to be either cognitive—referring
to actors' mental models of each other—or technical—referring to an actor's trust of a
technical artifact. In this paper, we take a more expansive view of trust: in addition to the
cognitive, we also consider trust in the architectural sense, which we term sociotechnical
trust. Broadly, sociotechnical trust applies at the level of roles. Our principal claim is that
sociotechnical systems are essentially specified in terms of sociotechnical trust. Whereas
previous work has considered dependencies between actors as a fundamental social
relation, we claim that no dependency can exist without the corresponding sociotechnical
trust.
Our contributions are threefold. One, we qualitatively show sociotechnical trust to be different
from cognitive and technical trust and the prevalent notions of dependencies among actors. Two,
we specify a conceptual model of systems based on sociotechnical trust. We introduce the novel
idea of one trust relation supporting another, which enables us to compare sociotechnical systems
for trustworthiness. Three, we specify a methodology for engineering trustworthy sociotechnical
systems. We evaluate our approach by modeling some aspects of a European food safety
legislation.

© 2012 Elsevier B.V. All rights reserved.
Keywords:
Conceptual modeling
Methodologies and tools
Sociotechnical systems
Roles
Trust
1. Introduction

This paper considers the problem of modeling sociotechnical systems involving multiple autonomous actors such as
organizations and humans. Autonomy means not only that none of the actors has control over other actors, but also that in
general each actor would be independently motivated and would have independently-designed information systems that
reflect its own motivations. This means that control-based abstractions for modeling information systems such as Web
services, workflows, UML, and so on, are inadequate for modeling sociotechnical systems. We would instead need to model
the interactions and the social relationships among the actors. Consider a modern health care system for example. It would
involve hospitals, doctors, patients, laboratories, funding agencies, regulatory authorities, insurance companies, and so
on, each of which is an autonomous actor. Consider, for instance, that no doctor controls any patient. However, they enter
into meaningful social relationships with each other, for example, to write prescriptions, in the context of the health care
system.

The importance of modeling the relationships among the actors is increasingly recognized by the software engineering
and modeling community. Various kinds of relationships have been proposed in the literature. These include i*'s intentional
dependencies [1], commitments [2], norms [3,4], and responsibilities [5]. In the software engineering community, the notion of
intentional dependencies has proved particularly influential. We take the notion of dependency among actors as our point of
departure.
opra1@lancaster.ac.uk (A.K. Chopra), paolo.giorgini@unitn.it (P. Giorgini).

ll rights reserved.

-based specification of sociotechnical systems, Data & Knowledge Engineering (2013),
05

http://dx.doi.org/10.1016/j.datak.2012.12.005
mailto:elda.paja@unitn.it
mailto:a.chopra1@lancaster.ac.uk
mailto:paolo.giorgini@unitn.it
http://dx.doi.org/10.1016/j.datak.2012.12.005
http://www.sciencedirect.com/science/journal/0169023X
http://dx.doi.org/10.1016/j.datak.2012.12.005

2 E. Paja et al. / Data & Knowledge Engineering xxx (2013) xxx–xxx
We acknowledge the importance of the notion of dependency among actors: any sociotechnical system exists in the
first place because actors depend on each other to get things done. Differently, however, from the approaches in the
literature (including i*), we propose capturing dependencies among actors in terms of sociotechnical trust relationships. It
is essentially trust that makes dependence on others reasonable: when an actor trusts another for something, it expects
the latter to do that thing. Lacking such a trust relationship, an actor can hardly depend on another for anything. Let's
return to the health care setting. Let Alice and ModernLabs be a patient and a laboratory, respectively. Alice would be
unlikely to make a payment to ModernLabs if she did not trust ModernLabs to deliver test results upon payment.

Our key intuition is that sociotechnical systems are organized along trust relationships. We describe an approach for modeling
sociotechnical systems in terms of trust relationships. In contrast to awide range of approaches on trust, it models trust at the level of
roles in a sociotechnical system. Thus, for example, the above relationship between Alice andModernLabswould in fact hold between
every patient–laboratory pair participating in the health care system.

Further, we want to be able to compare two sociotechnical systems in a particular domain, and be able to objectively say
which system fares better from the trust perspective. For example, all other things being equal, one could objectively say that
the health care system which encodes the above trust relationship between patients and laboratories is better for (all) patients
than the system without. “Objectively” means that anyone, even someone who has no intention or need of participating in the
systems being compared, would come to the same conclusion. We make such comparisons all the time in our day to day lives.
For example, we intuitively know that from a customer's point of view, an online marketplace that mandates that merchants
refund customers for returned products within a month of purchase is better than one that does not allow such returns; the
customers trust the merchants more in the former. It is the same reason why we deem credit card holders to be better off in
the credit card system resulting from the passage of the Credit Card Act of 2009 [6]—in the new system, credit card holders
now trust that banks will not arbitrarily raise interest rates, and so on. This paper explores the conceptual basis behind such
intuitions.

1.1. Contributions

Our notion of sociotechnical trust derives from Singh's notion of architectural trust [7]. Whereas Singh elaborates on the
formal semantics, our contributions lie in applying this notion to the engineering of sociotechnical systems, for which we coin the
term sociotechnical trust. Our contributions are the following.

• We give an interpretation of the important notion of dependency among actors in terms of trust among actors. We show how
this notion of dependency is different from those in the literature. We also show how the notion of sociotechnical trust is
different from those of cognitive and technical trust, which are two kinds of trust relationships that have received the most
attention in software engineering and computing.

• We characterize the notion of what it means for a sociotechnical system to engender more trust than another. We do this
via the notion of one trust relationship supporting another trust relationship. We then apply this notion toward
formulating a criterion by which one can claim if a system is more trustworthy than another from a particular role's
perspective.

• We present a methodology for modeling sociotechnical systems based on the supports relationships. We evaluate our
methodology against the European Food Safety Legislation (understood as a sociotechnical system for ensuring food
safety).

As a matter of convention, the terms ‘system’ and ‘trust’ refer to sociotechnical system and sociotechnical trust, respectively,
unless explicitly qualified otherwise.

1.2. Organization

The rest of the paper is organized as follows. Section 2 motivates and introduces the notion of sociotechnical trust. It also
discusses how sociotechnical trust is different from the prevalent notions of trust. Section 3 introduces a conceptual model of
sociotechnical systems. It also discusses the supports relation and defines what it means for one system to be more
trustworthy than another. It also presents a number of trust-supporting patterns. Section 4 presents a methodology for
specifying sociotechnical systems. Section 5 evaluates our methodology against a case study from the European Food Safety
Legislation. Section 6 discusses literature related to the broad themes in this paper and concludes with a discussion of future
work.

2. Sociotechnical trust

Our motivation behind proposing sociotechnical trust is to capture the essence of dependencies among actors. Currently,
dependence is broadly understood in terms of the goals of the actors. The notion of intentional dependency in Yu's i* [1] has proved
particularly influential. It sought to capture the idea that actors often depend on others for achieving their goals. Tropos [8] thenwent
on to build a software engineering methodology around this idea of intentional dependency. Separately, in the multiagent systems
community, Sichman et al. [9] introduced the notion of one actor depending on another for achieving its goals and give procedures for
inferring this dependence.
Please cite this article as: E. Paja, et al., Trust-based specification of sociotechnical systems, Data & Knowledge Engineering (2013),
http://dx.doi.org/10.1016/j.datak.2012.12.005

http://dx.doi.org/10.1016/j.datak.2012.12.005

Fig. 1. The trust relation T1.

Fig. 2. Instantiation of the trust relation T1.

3E. Paja et al. / Data & Knowledge Engineering xxx (2013) xxx–xxx
The problem, however, with goal-oriented formulations of dependencies is that they refer to the internal goals and
capabilities of actors. This means that the internal constructions (including the goals) of the actors involved would
themselves be public. In sociotechnical systems involving autonomous actors, however, the actors would normally
keep their internal constructions private. Further, actors can potentially join and leave the system at will. So it is not
even clear whose goals the dependencies refer to. Consequently, any formulation of dependency based on actors'
goals amounts to a brittle unwarranted assumption. What we need is a formulation of dependencies in terms of public
abstractions.

With sociotechnical trust, we wish to capture the notion of dependence without referring to actors' internals. We use the
notation T x; y; p; qð Þ to mean that x trusts y for q if p; here x and y are the truster and the trustee role, respectively, and p and q
are the antecedent and the consequent, respectively. The antecedent and consequent are propositions specified in some
formal language (in this paper, propositional logic). For example, T Alice;ModernLabs;paid;deliveredð Þ means that Alice
trusts ModernLabs to deliver the results if she has paid for the tests; T Alice;ModernLabs;⊤; deliveredð Þ means that Alice
unconditionally trustsModernLabs for delivery. In contrast to goal-oriented formulations, the antecedent and consequent do no
refer to the goals of the actors, but conditions of the environment that are in principle observable. For example, neither paid nor
delivered refer to anyone's goals; they may refer to events corresponding to the occurrence of certain messages the involved
actors exchange.

Because sociotechnical trust does not refer to actor internals, it can be applied between roles. For example, one can express
that the role Patient depends on the role Lab for delivery of results upon payment, that is, T1
Pleas
http:
T Patient; Lab;paid;deliveredð Þ ðT1Þ(T1)
Fig. 1 shows T1 graphically: roles are represented by ovals and a trust relationship among two roles is represented by an arrow
pointing from the truster toward the trustee labeled with the bantecedent, consequent> pair. When Alice and ModernLabs adopt
Patient and Lab respectively, the relation T(Alice, Modern, Labs, paid, delivered) is instantiated. Fig. 2 shows the instantiated trust
relation. The only difference from Fig. 1 is that actors are represented by dotted ovals.

The distinction between roles and actors and the relationship among them is crucial. Actors are not instances of roles;
they adopt roles. As you will see in Section 3, sociotechnical systems are specified with reference to roles, not individual
actors.

Dependencewithout sociotechnical trustwould bemeaningless. One can potentially imagine that patients depend on laboratories
for delivery, but that they do not trust so; however, it is not clear what dependence means in this case.

The notion of trust is a complex one and there are many different readings of what it means. Next, we distinguish
sociotechnical trust from two important kinds of trust relationships in the literature: technical and cognitive. We show with the
help of examples that the three are orthogonal notions, and that each plays a role in the smooth functioning of a sociotechnical
system.

2.1. Technical trust

By actors, we refer only to social entities. In practice, this means only humans and organizations (or their software
surrogates). A hospital (an organization) may provide the service of appointment scheduling via a Web application;
clearly, the application itself is not an actor in the same sense that a hospital is. Similarly, a laboratory may use several
devices in providing testing services to patients, for example, a CT scanner; clearly, the CT scanner too is not an actor.
Thus, in this paper, we do not talk about technical trust—whether the hospital trusts the scheduling Web application (to
work well) or whether the laboratory trusts the CT scanner. Broadly, technical trust is a relation where at least one of the
e cite this article as: E. Paja, et al., Trust-based specification of sociotechnical systems, Data & Knowledge Engineering (2013),
//dx.doi.org/10.1016/j.datak.2012.12.005

http://dx.doi.org/10.1016/j.datak.2012.12.005

(a) Sociotechnical trust (b) Technical trust

Fig. 3. Sociotechnical versus technical trust.

4 E. Paja et al. / Data & Knowledge Engineering xxx (2013) xxx–xxx
“actors” is a non-social component. We broadly identify technical trust with assurance [10], also sometimes referred to as
dependability [11]. Many trustworthy computing initiatives including Microsoft's famed one [12] fall under the category of
technical trust.

The contrast with technical trust is an important one. Technical trust is often applied in conceptually centralized settings
where an information system can be deployed and evaluated for desirable properties. However, sociotechnical systems are not
monolithic. Each actor is necessarily autonomous and implements the functionality it desires independently from other actors.
For example, a hospital would implement its information systems independently from a laboratory. Further, they may
have no visibility into each other's internal information systems. Therefore, whereas it may be prudent to dwell upon
whether a hospital or a patient considers a laboratory's information systems and devices dependable, in practice it may
turn out to be impractical to make any claims about them. However, it is critically important that the patient trusts
the laboratory for providing accurate test results. Fig. 3 illustrates in an architectural sense the difference between
sociotechnical and technical trust. As Fig. 1 shows, sociotechnical trust holds between social entities, such as Patient,
Lab, Hospital, and Doctor. As Fig. 1 shows, technical trust involves technical non-social components, such as the Web
Application. Incidentally, the traditional model of sociotechnical systems from requirements engineering is similar to
Fig. 1.
2.2. Cognitive trust

Most of the predominant computational approaches to trust have a cognitive bias. In such approaches, each agent has a mental,
and therefore necessarily private model of other agents based on which it chooses with whom to interact. Some approaches to trust
are based on reputation. Although reputation itself is a social concept in that an agent's reputation is public, it also ismostly applied in
a cognitive way—as an input to the agents' mental models.

As representative of the literature of cognitive trust, we consider Castelfranchi and Falcone's highly influential work on
cognitive trust [13]. Castelfranchi and Falcone ask “what kind of beliefs and goals are necessary for trust?” and then go on to
formulate various necessary conditions such as the truster having a goal g and the belief that the trustee is competent and willing
to achieve g. Further, the truster should rely on the trustee to achieve g, meaning that the truster should not try to achieve g itself.
In this manner, Castelfranchi and Falcone construct a rich picture of the mental state of actors. Let T C denote the cognitive trust
relation. For example, T C Alice;ModernLabs;paid;deliveredð Þ means that Alice cognitively trusts ModernLabs for delivery upon
payment.

Cognitive trust is an important kind of trust, but just the same as intentional dependencies, it refers to the internal states of
particular actors. Hence, it does not help us in the specification of sociotechnical systems involving autonomous actors.
Nevertheless, there is an interesting connection between cognitive and sociotechnical trust. Sociotechnical trust modeled at the
level of roles can inform an actor about the nature of the system, irrespective of particular actors that may participate in the
system (we shall return to this point in more detail in Section 3 when we discuss how one system can be considered more
trustworthy than another). Cognitive trust, by contrast, helps answer the question of whom to interact with. For example, let
us suppose that there is a system where T1 holds. Also suppose Alice adopts Patient, while ModernLabs and JohnsonLabs both
adopt Lab in this system. Therefore, T1 would be instantiated into both T(Alice, ModernLabs, paid, delivered) and T(Alice,
JohnsonLabs, paid, delivered). However, cognitively, Alice trusts only ModernLabs, not JohnsonLabs. In other words,
T C Alice;ModernLabs; paid;deliveredð Þ holds, but T C Alice; JohnsonLabs;paid;deliveredð Þ does not. In that case, it would seem
prudent for Alice to choose to interact with ModernLabs rather than JohnsonLabs. In general, sociotechnical and cognitive
trust are orthogonal: an actor may well choose to interact with a cognitively-trusted actor in the context of a system where
Please cite this article as: E. Paja, et al., Trust-based specification of sociotechnical systems, Data & Knowledge Engineering (2013),
http://dx.doi.org/10.1016/j.datak.2012.12.005

http://dx.doi.org/10.1016/j.datak.2012.12.005

5E. Paja et al. / Data & Knowledge Engineering xxx (2013) xxx–xxx
the appropriate sociotechnical trust relations do not hold rather than interact with a cognitively-untrusted actor in a system
that has the appropriate sociotechnical trust relationships.

3. A conceptual model of sociotechnical systems

Following [14], we conceptualize a sociotechnical system as a specification of trust relationships with reference to roles, not
particular actors. Let ϕ be a set of symbols. LetP be the set of all propositions over ϕ (including T, the constant for truth) using the
connectives of propositional logic. Let p, q,… range overP. Let R be a set of roles and let x, y,… be variables over roles and agents
(whether they are over role or agents will be clear from the context of usage). We use T1, T2, … as labels to refer to trust
relationships.

Definition 1. A sociotechnical system S is a set such that SpR�R�P � P. We say T(x, y, p, q) if and only if x; y;p;qð Þ∈ S.

For instance, consider a systemHS1 in the health care domainwith two roles Patient and Lab. In this system, the Patient trusts the
Lab that it will provide accurate test results (T2). HS1 is characterized as {T2}.

Consider another health care system HS2 that in addition includes the role SpecializedLab, referring to a laboratory
specialized for particular kinds of tests. In addition to T2, the Lab trusts the SpecializedLab to analyze test outcomes and provide
accurate results (T3). Also, the Patient trusts the Lab that personal data will be confidential and not disclosed to other third
parties (T4). HS2 is characterized as {T2, T3, T4}.
Pleas
http:
T Patient;Lab; takeTest; receiveAccurateResultsð Þ ðT2Þ

T Lab;SpecializedLab;⊤; provideAccurateResultsð Þ ðT3Þ

T Patient; Lab;providePersonalData; ensureConfidentialityð Þ ðT4Þ

(T2)

(T3)

(T4)
3.1. Comparing sociotechnical systems

Consider T1. To make this relationship more robust, one can think of other trust relationships, for example, that in the case of
an excessive delay, patients trust laboratories to notify them about it (T5), or that patients trust regulatory authorities to perform
regular audits on the performance of laboratories to guarantee receiving accurate results (T6), and so on. From the patient's point
of view, both T5 and T6 support T1.
T Patient; Lab;excessiveDelay;notifiedð Þ ðT5Þ

T Patient;RegulatoryAuthority;auditedLab; receiveAccurateResultsð Þ ðT6Þ

(T5)

(T6)
We introduce the notation T(x, y, p, q)≻T(x, z, r, s) to mean that T(x, y, p, q) supports T(x, z, r, s) from x's perspective. Thus, for
example, T5≻T1 and T6≻T1. Intuitively, a trust relation supports another if it potentially helps dealing with exceptions related to
the latter.

Fig. 4 depicts that T5 supports T1. The supports relation is represented by an arrow pointing to the trust relation that is being
supported.

One can imagine other kinds of relationships that potentially support T1. For example, T7 assures patients that their stored
personal data will remain confidential; T8 assures a patient that upon written consent, the results may be delivered to some other
person named by the patient.
T Patient; Lab;personalDataStored; confidentialityEnsuredð Þ ðT7Þ

T Patient; Lab; consentGiven;deliveredToNamedPersonð Þ ðT8Þ

(T7)

(T8)
We provide now a definition of what it means for a system to be more trustworthy from a role's perspective.

Definition 2. Let S1 and S2 be two systems. We say that S2 is more trustworthy than S1 from x's perspective (S2≫ x S1) if and only
if:

1. (x, y, p, q) ∈ S1 implies (x, y, p, q) ∈ S2, and
2. ∃(x, z, r, s) ∈ S2 such that T(x, z, r, s)≻T(x, y, p, q)

Thus, for example, {T1, T6, T5}≫Patient {T1}.
e cite this article as: E. Paja, et al., Trust-based specification of sociotechnical systems, Data & Knowledge Engineering (2013),
//dx.doi.org/10.1016/j.datak.2012.12.005

http://dx.doi.org/10.1016/j.datak.2012.12.005

Fig. 4. Graphical representation of the supports relation.

6 E. Paja et al. / Data & Knowledge Engineering xxx (2013) xxx–xxx
Definition 2 gives potential participants and designers a basis for comparing sociotechnical systems. It captures the intuition that
systems that make more provisions for exception handling are better. Of course, this does not mean that actors will adopt roles in
systems that are more trustworthy in the above sense—they may have other requirements because of which they may favor
participating in systems that are less trustworthy. Nonetheless, Definition 2 can serve as one among potentially many criteria for
evaluating systems.

3.2. Patterns of trust

When specifying a system in terms of trust, the engineer would potentially try to identify the supports relations relevant to
the system under consideration. Among the identified relationships, he or she would include in the system specification those
that accord with the stakeholder requirements. Identifying the supports relations, though, is nontrivial. They are, generally
speaking, domain-dependent. For any particular application, they are elaborated as a result of going through the domain
description, which includes the regulations and rules governing the sociotechnical system. However, there are some recurring
supports patterns that seem to apply across domains. Table 1 presents a number of supports patterns, which we call patterns of
trust, and are induced from the set of patterns presented in [15,16].

Trust relationships among actors evolve with interaction [7]. In Table 1, the propositions violated, delegated, threatened, undo,
unreasonable, renegotiated, and so on, represent potential states in the evolution of these relationships. We will show by means of
examples how these patterns of trust help enhance trust in a system.

Referring to our health care running example, in case the Lab cannot deliver the test results to the Patient, then it can rely on a
SpecialCourier to take care of that, offering yet another way to satisfy the Patient's needs.Delegating the responsibility of delivering
the results to the SpecialCourier makes the relationship between Patient and Lab more robust. Recall T1 (T(Patient, Lab, paid,
delivered)). Let Ti be T(Patient, Lab, threatened(Patient, Lab, paid, delivered), delegated(Lab, SpecialCourier, delivered)); then Ti≻T1.

We represented delegation here as covering for potentially threatened trust relationships; however this pattern can be used for
any situation in which one party relies on another to achieve a desired objective.

DelegationAcceptance is used to set up the proper relationship between a delegator and a delegatee for effective delegations.
Generally, the delegator (Lab) may delegate to other roles (SpecialCourier), as shown in the first example, either when it cannot
satisfy the trust relationship itself or when it is more convenient to rely on others. However, the delegatee is not bound to accept
the delegation. DelegationAcceptance(Patient, Lab, SpecialCourier, paid, delivered) means that Patientwill trust more a health care
system in which the designated courier (in our example SpecialCourier) acknowledges and accepts the delegation from the
laboratory, rather than the health care system in which such acceptance does not occur. The idea behind delegationAcceptance is
that if the dependencies within the sociotechnical system are made stronger by being accepted, they can support the interactions
of potential participants depending on the entities operating in the sociotechnical system.

MutualTrust is used to create reciprocal relations between the interacting parties. If one role trusts the other for u conditioned upon
r, then the latter trusts the former for r conditioned upon u. This pattern aims to set up a richer and more flexible engagement,
wherein both parties trust each other. MutualTrust(Patient, Lab, paid, delivered) states that not only Patient trusts the Lab to deliver
results once paid, but also the Lab trusts Patient to pay for the tests upon delivery. This pattern is less prone to violations than when
we have just a unilateral relationship, as only one party could possibly violate its trust relationship, and thus supports T1.

Compensate and revert can be used to capture return–refund scenarios. Let Tj be T(Patient, Lab, violated(Patient, Lab, paid,
delivered), refund∧discountCoupon). Then Tj≻T1. A trust relationship that ensures refunds along with a discount coupon for future
Table 1
Some patterns of trust.

Name Trust Encoding

delegation(x, y, z, p, q) T(x, y, threatened(x, y, p, q), delegated(y, z, p, q))
delegationAcceptance(x, y, z, p, q) T x; y; T y; z; p; qð Þ∧delegation x; y; z; p; qð Þ; accepted z; y; p; qð Þð Þ
mutualTrust(x, y, r, u) T(x, y, T(y, x, u, r), T(x, y, r, u))
compensate(x, y, p, q, r, s) T x; y; violated x; y; p; qð Þ; T x; y; r; sð Þð Þ
revert(x, y, p, q, r) T(x, y, revert(q), T(x, y, r, revert(p)))
renegotiate(x, y, p, q, r, s) T x; y; unreasonable p; qð Þ; T x; y; renegotiated r; sð Þ; T y; x; r; sð Þð Þð Þ
separationOfDuty(x, y, z1, z2, p, q1, q2) T(x, y, p, sod(z1, z2, q1, q2))

Please cite this article as: E. Paja, et al., Trust-based specification of sociotechnical systems, Data & Knowledge Engineering (2013),
http://dx.doi.org/10.1016/j.datak.2012.12.005

http://dx.doi.org/10.1016/j.datak.2012.12.005

7E. Paja et al. / Data & Knowledge Engineering xxx (2013) xxx–xxx
tests makes the relationship more robust from the patient's point of view: the laboratory would compensate for the violation by
offering a discount coupon and undoing the payment done by the patient. Thus, the application of this patterns would support the
patient's initial trust in the laboratory for delivering test results. As a consequence, we say that the patient considers the latter
system to be a better choice for him (more trustworthy).

Renegotiate, on the other hand, offers more alternatives for the role to choose. For example, in case of T1 the laboratory might deliver
the results of the test in amoment of time that is considered late for thepatient. Thepatientmay renegotiate for the timeof thedelivery to
have the laboratory deliver the results ahead of time, by perhaps making a special request. Let Tk be T(Patient, Lab, paid, delivered,
specialRequest, deliverAheadTime), as a result of applying renegotiate. Renegotiating other properties other than the initial one
concerning the delivery of results, makes the interaction among the patient and laboratory more complete and robust, therefore the
application of this pattern would lead to a more trustworthy health care system from the patient's point of view. So, we would have
Tk≻T1.

SeparationOfDuty ensures more reliable interactions. For instance, if Tl stands for T(Patient, Lab, Doctor1, Doctor2, takeTest,
performTest, approveResults) representing the pattern separationOfDuty, it supports the Patient's trust in the Lab to receive accurate
results after taking the test (T2). It does so by ensuring that the same doctor does not perform the test and approve the results for the
same test, that is, the roles Doctor1 and Doctor2 must not be adopted by the same doctor actor. This means that if doctor Doctor1 is
performing the test to the patient, then he or she cannot also approve the results,Doctor2 should do it instead. This double checking of
results supports thetrust relationship the patient has toward the lab for delivering accurate test results, in other words Tl≻T2.

Twopoints areworth emphasizing here. One, the intuition behind introducing the supports relation is exception-handling. If there
is a supporting trust relation for a particular trust relation, then exceptions pertaining to the latter can potentially be handled within
the system itself. In the absence of a supporting trust relation, the exception would have to be dealt with outside the system. Two,
decidingwhether a trust relationship supports another is not a trivial task. For example, one could argue that Ti≯T1 on grounds that a
patient may prefer not to have delivery outsourced to a third party. Our assumption is that domain experts would identify the
supports relationships for the application under consideration.

4. System specification methodology

Our conceptual model of sociotechnical systems binds together roles via trust relationships. Now, we describe a methodology for
coming up with the specification of a system in terms of trust relationships starting from a set of stakeholder requirements. Besides the
requirements themselves, themethodology relies on domain knowledge in order to comeupwith the trust supporting relationships. The
methodology is iterative: one comes up with a specification from requirements, identifies and then fills the potential gaps via the
domain-specific supporting relationships and the patterns of trust, and then accounts for changes in requirements.

I. Initial Specification
Step 1. Identify the roles

Begin by gathering a description of the application and its general domain. This includes the requirements. Then
identify the roles that participants can potentially adopt in the system.
Generally, in a domain description, there is information about who does what. For instance, in a service-oriented
setting, the operating roles would be user and provider of the requested service. Some of the requirements would
amount to interactor expectations, which can be used to identify the roles in the system. Earlier, we listed the
participants in the health care example.

Step 2. Analyze social interactions
i. Identify interactions: After identifying the participating roles, identify the interactions they are involved in. For instance,

if wewant to specify the system in terms of trust relationships from Patient's perspective, thenwe need to identify the
interactions it participates in. If Patient has the requirement to take some tests at the Lab, it might have several
interactionswith the Lab to achieve this requirement. First, the Patientmay take an appointment, then take the test, and
finally make the payment to receive test results. All these are interactions that take place between Patient and Lab in
order for Patient to achieve its requirement of taking tests at the Lab. Similarly, for other roles we identify the
interactions they are involved in. These are not only bound to specific requirements, but canhold for different purposes.

ii. Group interactions and identify trust relationships: For each role and for each requirement, group the various
interactions that take place. As shown from the example in the previous step, for a certain requirement there can be
several interactions between a pair of roles. Therefore, we can group these interactions and abstract from them trust
relationships. We can identify either several trust relationships related to one requirement of a particular role or a
representative trust relationship for the whole interaction. For simplicity, we choose to have one trust relationship
per requirement. In our example, we consider the trust specification as containing the trust relationship between
Patient and Lab, in which Patient trusts the Lab to have the test results delivered: T(Patient, Lab, paid, delivered).

Step 3. Identify the supports relations
After having identified the basic trust relationships, look for ways for making the system more robust to exceptions;
that is, identify the supporting trust relationships. Look for domain-specific information that offer mechanisms to
support the trust relationships. Starting from a role-based perspective, we consider the mechanisms that support the
trust relationships this role has, thereby supporting its given requirements. For instance, in our running example, we
want to come upwith a trust specification that makes a given health care systemmore trustworthy from the Patient's
Please cite this article as: E. Paja, et al., Trust-based specification of sociotechnical systems, Data & Knowledge Engineering (2013),
http://dx.doi.org/10.1016/j.datak.2012.12.005

http://dx.doi.org/10.1016/j.datak.2012.12.005

8 E. Paja et al. / Data & Knowledge Engineering xxx (2013) xxx–xxx
perspective. For this, starting from one requirement the Patient has (receive accurate test results), we have a first
specification of trust in terms of the trust relationship established betweenPatient and Lab. But, wewant to ensure this
trust relationship holds, that iswhywe look formechanisms that support this trust relationship, and as a result support
the achievement of the Patient's requirement. Suppose that the Lab uses a particular device to analyze samples taken
from thePatient. Checking the device periodically (say every night) supports receiving accurate results. From this, we can
abstract a supports relation, namely: periodical checks.
In order to identify the supports relations, we look at the domain description obtained in the first step and consider
domain-specific information. For instance, in the health care example, we consider information about how particular
procedures are performed and what happens if the normal flow is not followed. Potential sources for identifying the
supports relations include contracts (especially the clauses related to authorizations, obligations, prohibitions or
penalties), manuals, procedural regulations, and so on.

II. Enhancing trust: Making the initial system specification more robust
Step 1. Apply the supports relations

For the given requirements, if we discover trust supporting relations for the trust relationships that represent these
requirements, we apply them to obtain a more trustworthy system. Going back to our running example, we apply
the trust relation periodical checks to support receive accurate test results.

Step 2. Identify gaps and apply patterns of trust
After applying the supports relations, we check again the specification of the system, and identify unhandled
situations, that is, find the trust relationships that have no applicable supports relations. Further, we consider also
the situations in which the applicable supports relations might themselves be threatened by exceptions. We then
evaluate the possibility of handling the exceptions with the help of the patterns of trust.
We identify the applicable patterns and introduce them on top of the trust relations they support. For instance, if
the Patient is not delivered the test results, we can apply the Compensate pattern, which refunds the Patient for the
performed payment and provides him or her with a discount for the next time he or she needs to retake the test.
This pattern makes the trust relationship between Patient and Lab more robust as it considers handling a situation
in which things go wrong and offers a solution to it.

III. Revise: Check for new requirements
The process is iterative and it continues till it provides a system specification that supports the satisfaction of all the given
requirements. However, requirements may change with time; so this is another trigger to go through the entire process
again, this time taking into consideration the new requirements. These new requirements may bring up the application of
new supports relations or patterns of trust. For instance, if patients have the requirement to have test results delivered from
the laboratories, they might have an additional requirement of keeping track of the process from the moment of taking the
test to the moment of obtaining the results. Traceability is another mechanism we can apply, to help patients satisfy their
requirement, and provide a system specification that apart from ensuring the delivery of the test results, also ensures
keeping track of the status of the whole delivery process.

Fig. 5 represents graphically the processes that take place in designing a trustworthy sociotechnical system. It shows the different
steps our approach follows starting from the identification of an initial system specification (I.2), to the improvement of the system
specification through supports relations (identified in I.3 and applied in II.1) and patterns of trust (II.2). The approach is iterative as new
requirements and domain-specific information might emerge and trust relationships might be violated. We follow the steps of this
process in a real case study regarding European Food Safety Regulation in Section 5.

5. Case study: the food safety regulation

The European Parliament and the Council have adopted Regulation (EC)178/2002 [17] to harmonize all Member States food
legislation in a general Food Safety Regulation, whose primary objective is consumer protection throughout Europe. The regulation
lays down all requirements on food safety, establishing the rights of consumers to safe food and accurate information. It imposes
requirements on any substance that is intended or expected to be incorporated into a food (feed) during its manufacture, preparation
or treatment [17]. These requirements must be applied by all food operators in order to comply with the regulation. Whenever a
breach to a particular legal limit is identified, it might be the case that the product in question might be injurious to human health or
unfit for human consumption [17]. Therefore, assessments need to be carried out to verify the product conditions. A crucial point of
(EC)178/2002 regulation is traceability of food,whose aim is assuring that the origins of food or feed ingredients and food sources can
be identified along the whole food (feed) chain from production to consumption. This is especially relevant when products are found
to be faulty. It works on the basis of “one step back–one step forward” principle: every food operator should be able to identify the
immediate supplier and the immediate recipient of the product at hand. For this reason, traceability is established at all stages of food
(feed) chain. According to regulation (EC)178/2002, the responsibility for ensuring food safety lies with food business operators.
Competent authorities perform controls to ensure compliance with the regulation.

In case products are not in compliance with food safety requirements or there are reasons to believe that this might be the case,
food business operators should start the procedures for withdrawing these products from the market. As part of these procedures
stands also the obligation to notify competent authorities. If the product at hand is considered to be unsafe or unfit for human
consumption and it has already been released to the market, food operators should inform consumers accurately and effectively for
Please cite this article as: E. Paja, et al., Trust-based specification of sociotechnical systems, Data & Knowledge Engineering (2013),
http://dx.doi.org/10.1016/j.datak.2012.12.005

http://dx.doi.org/10.1016/j.datak.2012.12.005

Fig. 5. Sociotechnical system specification methodology.

9E. Paja et al. / Data & Knowledge Engineering xxx (2013) xxx–xxx
the reason of withdrawal and if necessary recall from them the products already supplied to them [17]. Recall means that the
consumers either should return the product back where they purchased it or they should destroy it. Food business operators are
responsible for taking thesemeasures and collaboratingwith authorities, providing relevant information to them, and participating in
traceability so that the end consumers face no risks.When it comes to import and export of food and feed, the regulation has no effect
outside EU. As far as imports are concerned, requirements are imposed to the EU importer, who should be able to identify the source
in the third country from whom the products were acquired. As for exports, EU regulations are in place, unless the third country
specifies other requests, in which case these take precedence.

In the Food Safety Regulation case study, the core requirement is that consumers are provided with safe food, which means
that every food placed on the market must be safe. Therefore, we will follow the steps of our iterative methodological approach to
build the trust specification in order to enhance consumers' trust about the overall food chain.

5.1. Trust specification

We start from the requirement of providing safe food in the market and build the trust specification for the system that should
satisfy this requirement.

I. Initial specification
The description of the domain includes the way the law imposes restrictions on the way food chain operates. We have
already provided the description of the domain for the Food Safety Regulation at the beginning of this section.
Step 1. Identifying roles

First, we need to identify the roles present in the system, so that agents interested in participating can adopt the
appropriate roles. The Food Safety Regulation exposes the following participating roles: Member States (MS), Food
Safety Authority (FSA), Food Business Operator (FBO), European Consumer (EC), Third Country (TC). Notably, various
stakeholders such as food (feed) manufacturers, importers, brokers, farmers, distributors are all classified as FBO.

Step 2. Analyze social interactions
Authorities (FSA) impose requirements over the FBO with regard to assessing the quality of the products they place on
the market, providing accurate information to consumers, taking into account sensitivities of particular consumer
groups, and categorizing food accordingly. The FSA holds the FBO responsible for the activities under their control.
EuropeanConsumers (EC) expect to have noharmby the food theybuy and tohaveno injurious foodplaced in themarket.
Please cite this article as: E. Paja, et al., Trust-based specification of sociotechnical systems, Data & Knowledge Engineering (2013),
http://dx.doi.org/10.1016/j.datak.2012.12.005

http://dx.doi.org/10.1016/j.datak.2012.12.005

10 E. Paja et al. / Data & Knowledge Engineering xxx (2013) xxx–xxx
To be in compliance with (EC)178/2002 requirements and specifications, the trust relationships in Table 2 must hold.
We include only the relationships from the consumers and foodbusiness operators perspectivewithin the EU, not the ones
dealing with import or export operations. We provide a semi-formal graphical representation in a multilayer perspective
(Fig. 6) starting from the basic situation (container denoted with R) that represents the system in which EC (European
Consumer) trusts FBO to place safe food on the market. This trust relationship is established to represent the core
requirement that consumers are provided with safe food, that is, every food placed on the market must be safe. Food
operators are responsible for ensuring this, thereforewe show the trust relation that should hold betweenEC and FBO (T9).

Step 3. Identify the supports relations
The regulation specifies mechanisms that can help improve this situation, thereby enhancing the chances of
achieving the primary requirement of having safe food on the market. From the domain description, we can spot out
mechanisms that deal with measures that need to be taken along the food chain, such as the obligations to notify
authorities, to monitor, and to withdraw and recall products injurious to human health, and so on. These
mechanisms are actually the supports relations specific to this domain. We identify: Monitor, Notify, Prohibit,
Traceability, Withdraw or Recall, and Assess Risks.

II. Enhancing consumers' trust
Step 1. Apply the supports relations

We now apply the identified supports relations to enhance European consumers' trust in the system, to ensure they
are provided with safe food. The structuring of the trust relationships in Fig. 6 serves the purpose of considering the
different trust relationships that are established between EC and FBO along the different phases of the food chain.
Thus, after specifying the first trust relationship (T9) in the first layer, in the second layer we consider monitoring
(Monitor: T14) and notification (Notify: T15) mechanisms. They consist in monitoring suppliers and food, and in
notifying when food safety is at risk. As such, these two trust relationships support the initial trust relationship T9.
Monitoring increases the level of trust consumers have on the products placed on the market, given that a food
safety authority is involved in the process (FSA). However, monitoring alone is not enough. Notification helps
identify and handle risky situations, and on top of it prohibition (Prohibit: T10) avoids placing unsafe food in the
market. Thus, it further supports T9.
Prohibiting unsafe food in the market is one special case, in which food is identified to be unsafe for human
consumption even before being distributed. But, problems might be identified when this initial stage is already
passed. That is why Traceability mechanisms (T13) are applied on top of prohibition, monitoring and notification, so
that any time a given risk is identified, it is possible to find the node in the food chain in which the breach occurred.
Table 2
Trust relationships based on role perspectives.

Trust relationships

European Consumers’ Perspective

T
9
. T(EC, FBO, onMarket(f), safe(f))

Consumers trust food business operators that every product they placed in the
market is safe.

T
10

. T(EC, FSA, violated(T9), prohibitPlacingOnMarket(f))

Consumers trust the authorities that if food is found to be unsafe, it will be

prohibited to be placed in the market.

T
11

. T(EC, FBO, violated(T9), T(EC, FBO, informOn(f), withdraw(f)))

Consumers trust food business operators that if unsafe food is found on the

market, they will be informed and the food will be withdrawn from the market.

T
12

. T(EC, FBO, hazardsIdentifiedOn(f), assessRisksRelatedTo(f))

Food business operators should perform risk assessment and analysis for any

potential hazard related to a given food product.

T
13

. T(EC, FBO, product(f, FBO) ∧ ingredients(f, i0) ∧
... ∧ ingredients(f, in), record(i0, supplier0) ∧ ... ∧
record(i

n
, suppliern) ∧ record(f, customer))

Food business operators should keep record of all the suppliers of ingredients of

the products they sell and of all the immediate customers.

Food Business Operators’ Perspective

T
14

. T(FSA, FBO, monitoredSuppliers, risksDetectedEarly)

Problems with food will be detected early if food business operators monitor their

suppliers.

T
15

. T(FSA, FBO, risked(T9), notify)

Food safety authority expects to receive notification on risk.

Please cite this article as: E. Paja, et al., Trust-based specification of sociotechnical systems, Data & Knowledge Engineering (2013),
http://dx.doi.org/10.1016/j.datak.2012.12.005

http://dx.doi.org/10.1016/j.datak.2012.12.005

Fig. 6. Enhancing European Consumers' Trust: Applying supports relations.

11E. Paja et al. / Data & Knowledge Engineering xxx (2013) xxx–xxx
Whenever a hazard is encountered, traceability is used to identify the source of such risk.
Food operators should perform risk assessment to verify the status of the given product. If food is found to violate safety
requirements, consumers must be notified and the product needs to be withdrawn or recalled (Withdraw/Recall: T11).
Risk assessment procedures influence the decision to withdraw or recall a product from the market (Assess Risks: T12).
Notably, assess risks supports all the trust relationships introduced in the layers below.
For simplicity and readability of the figure, we do not use the notation introduced in Fig. 4 in Section 1, but instead we
use the supports relationship symbol at the border between the subsequent layers, to represent the fact that trust
relationships in the above layer support trust relationships in the layers below, enhancing at each subsequent layer
consumers' trust about the system. As such, this structuring conveys the idea of how consumers' trust is increased by the
application of supports relations.

Step 2. Apply patterns of trust
After applying the supports relations, we consider possible exceptions that can occur. Notice that in order to ensure
that suppliers comply with the food safety regulation by providing food that is within the specified parameters, we
used monitoring to support T9. However, this supports relation would not work out if the actor that adopts FSA (the
monitoring authority) adopts FBO too. To avoid this problem, we apply the pattern SeparationOfDuty (SoD, see
Fig. 7). We represent the patterns as labels positioned right in front of the supports relations, whose possible
exceptions they can handle. The same pattern can be applied over Assess Risks as well.
Moreover, food business operators have to carry out risk assessment procedures, but they might not have the
capability or the right equipment to perform such procedures. Therefore, we apply the Delegation pattern to allow
FBO to delegate this task to a more specialized entity. For simplicity, we do not introduce the new roles that emerge,
but only the application of the patterns of trust.
In case a recall happens, and the consumers have to bring back the product, we apply the Compensate pattern to refund
consumers for the product they have purchased, as well as to offer them a discount coupon for the following purchases.
In this way, via the application of supports relations and patterns of trust, we handle the various exceptions that might
arise in the trust relationship among the roles EC and FBO.

III. Revise
We do not consider here the introduction of new requirements in the food safety regulation case study.

5.2. Comparison

We presented a graphical representation of a sociotechnical system from the food safety regulation case study showing trust
relationships that hold between the different roles (mainly consumers and food business operators) along the food chain. We used the
Please cite this article as: E. Paja, et al., Trust-based specification of sociotechnical systems, Data & Knowledge Engineering (2013),
http://dx.doi.org/10.1016/j.datak.2012.12.005

http://dx.doi.org/10.1016/j.datak.2012.12.005

Fig. 7. Enhancing European Consumers' Trust: Applying patterns of trust.

12 E. Paja et al. / Data & Knowledge Engineering xxx (2013) xxx–xxx
case study to identify domain-specific supports relations that aim to increase the consumers' trust in this sociotechnical system. Based on
the identified supports relations, we built a structured graphical representation of the trust relationships that hold in the system to help
possible participants decidewhich system theywant to play a role in. This representationmakes the role perspective clearer by showing
the relations they might be involved in. Furthermore, this structuring allows to see how trust is increased in a layered fashion by
representing the trust supporting mechanisms and patterns of trust. All mechanisms represented in terms of supports relationships and
the applied trust patterns, serve the purpose of ensuring consumers' safety and inspiring their trust in the system.

Is the approach scalable for larger case studies? Our approach depends on the clarity of the information regarding the considered
domain, as the process of discovering supports relations is domain-specific. Once this step is carried out, the application of the patterns
of trust is easier as it tries to fill in the gaps left by the supports relations or to handle possible exceptions that might arise from them.
6. Discussion

In this paper, we proposed sociotechnical trust as the essential meaning of the notion of dependency among actors in
sociotechnical systems. We model a system in terms of trust relationships among roles in the system; when specific actors adopt
the roles, those relationships are instantiated. Making the trust relationships explicit helps prospective participants decide what
they can expect from other participants of the system and what is expected of them at a social level. We then advanced the idea of
certain trust relationships supporting certain others, and used this notion to help compare sociotechnical systems from a
role-based perspective. Thus, whereas a health care sociotechnical system may be more trustworthy from the patient's point of
view, it may be less trustworthy from a laboratory's point of view. Such a perspective follows naturally from the fact that trust is a
directed relationship.

We analyzed a European food safety regulation on the basis of our approach. The case study reveals that a sociotechnical system
is not a list of trust relationships, but there is an underlying structure in the sense that some trust relationships enhance some
others. Understanding the structure of a system will prove valuable for those who want to decide their participation in a system.

It is worth emphasizing that our notion of a system being more trustworthy than another relies upon domain experts and
stakeholders identifying the supporting relationships, whichmay or may not agree with potential participants in the system. For a
particular actor, a system that is more trustworthy by Definition 2 may be less suitable. For example, even though {T1,T6,
T5}≫Patient{T1}, Alice may nonetheless prefer {T1} for whatever (potentially unknown) reason. This does not indicate a flaw in our
definition; it highlights the fact that our notion of trust does not rely upon actor internals (here, Alice's intentions).
Please cite this article as: E. Paja, et al., Trust-based specification of sociotechnical systems, Data & Knowledge Engineering (2013),
http://dx.doi.org/10.1016/j.datak.2012.12.005

http://dx.doi.org/10.1016/j.datak.2012.12.005

13E. Paja et al. / Data & Knowledge Engineering xxx (2013) xxx–xxx
6.1. Sociotechnical systems

The field of sociotechnical systems emerged in the 1960s. Its principal concern was the design of work in organizations,
meaning how to design organizational systems that took into concern not just the technical requirements of stakeholders, but
also the social and humanistic concerns of users and employees [18]. Fields such as human–computer interaction (HCI) and
computer-supported collaborative work (CSCW) have traditionally been at the forefront of sociotechnical systems research (for
example, see [19] and [20]). Baxter and Sommerville [21] recommend a range of other fields and methods, (for instance,
ethnographic studies), that software engineering needs to consider in order to move from the realm of the technical to the social.

The notion of understanding systems in terms of trust relationships among its actors sheds new light on the social structures of
sociotechnical systems. There is one important difference though between the traditional conception of sociotechnical systems
and our conception. The traditional conception emphasizes an organizational setting (with increasingly decentralized
decision-making, as Mumford [18] suggests) whereas our conception emphasizes autonomy and logically-decentralized settings.

6.2. Software engineering

Baxter and Sommerville [21] conceptualize a sociotechnical system as a conceptually centralized system (potentially with
physically distributed components) that pursues its goals and adapts accordingly. In our conception, the system does not have
goals; it is a specification of trust relationships. This enables us to talk sociotechnical systems spanning multiple autonomous
actors, each of whose goals are potentially unknown.

Requirements engineering modeling languages and methodologies such as i* and Tropos, although multiactor, also assume a
single organizational setting, and thus are conceptually centralized as well [22]. Some researchers have forwarded the notion of
responsibility of actors, either as requirements themselves or as their potential source. Dardenneet al.'s [23] notion of responsibility is a
single-actor relation, not multiactor. Other work [5,24] advances responsibility as a multiactor relation; however, it is understood in
terms of the obligations of actors. By contrast, trust implies no obligation; it is therefore a lighter, more elementary relation for
understanding the structure of sociotechnical systems at a high-level.

Just the same as responsibilities though, the specification of systems in terms of trust relationships can serve as requirements for
further engineering. As a normative relation, trust is somewhat weak—it is not enforceable. The specification can be used to come up
with the specification of the commitments [25] (understood as elements of contracts) among actors. The advantage with
commitments is that they are enforceable. Alice may trust ModernLabs for delivery upon payment, but in practice that may not be
enough for her to act; she may also need the corresponding commitment from the laboratory. Trust and commitment seem to be
orthogonal social notions. Neither implies the other. An actor can act solely upon the basis of trust or solely upon the basis of
commitments, but the ideal situation would involve both trust and commitment. An interesting direction to explore would be the
interplay between trust and commitment. Singh [26] echoes similar intuitions.

Checkland [27] contrasts the narrow idea of engineering as building systems given some objectives with the broader idea of
systems thinking, which involves exploring a problem space that is both rich and confusing because of the complexity of human affairs.
According to him, in situations dealingwith human affairs, even stated objectives are never straightforward. Goguen [28] expresses a
similar intuition about requirements when he claims that given the complexity of social affairs, requirements are potentially known
only in hindsight. Like Baxter and Sommerville, both Checkland and Goguen point to the richness and difficulty of building systems to
support human affairs. This bears upon thework we presented here: althoughwe have amodel of sociotechnical systems in terms of
trust and a simple methodology for specifying such systems, we abstract away in the methodology from the details and richness of
human affairs that would bear upon the modeling.

6.3. Trust

Castelfranchi [13] lists different kinds of trust that often come into play: trust in the environment and infrastructure (technical trust),
trust in one's own agent (technical trust because it amounts to trust in the software that an actor uses), and trust in authorities and
partners (both cognitive). These are all important kinds of trust; however none of these is sociotechnical. Asnar et al. [29] model trust
relationships among actors in order to analyze risk; however in their approach, trust is an agent's subjective belief about another, in other
words, cognitive. Similar to our approach, Giorgini et al. [30] model social trust at the role level. They present examples where any agent
adopting some role must trust another adopting another role for something; however, cognitively it may not. Giorgini et al. deem this a
conflict. In our approach, such a situation is not a conflict—social and cognitive trust are orthogonal concepts. Our idea of assuming
domain-specific trust enhancing (the supports) relationships is not unfounded. Jones et al. [31] present a list of trust requirements for
e-business. Haley et al. [32] introduce the notion of trust assumptions to help discharge concerns about system security.

6.3.1. Future directions
This paper is an elaboration of our intuitions that relate system specification to trust; therein, lies its novelty. Potentially

interesting future directions include (1) considering the trust specifications themselves as requirements for engineering contracts
among parties, (2) giving a richer account of the various social factors (as advocated in the sociotechnical systems literature) that
go into system specification, and (3) making the intuition behind the supports relation more concrete by defining it in terms of
exception handling.
Please cite this article as: E. Paja, et al., Trust-based specification of sociotechnical systems, Data & Knowledge Engineering (2013),
http://dx.doi.org/10.1016/j.datak.2012.12.005

http://dx.doi.org/10.1016/j.datak.2012.12.005

14 E. Paja et al. / Data & Knowledge Engineering xxx (2013) xxx–xxx
Acknowledgments

The research was partially funded by the European Union Seventh Framework Programme (FP7/2007–2013) under grants no.
257930 (Aniketos) and 256980 (NESSoS). Amit Chopra was supported by aMarie Curie TrentinoCofund grant and the ERC Advanced
Grant 267856 Lucretius: Foundations for Software Evolution. We are grateful to Munindar Singh for helpful discussions. The comments
of the anonymous reviewers also helped improve this paper substantially.

References

[1] Eric Yu, Towards modelling and reasoning support for early-phase requirements engineering, in: Proceedings of the Third IEEE International Symposium on
Requirements Engineering, 1997, pp. 226–235.

[2] Nirmit Desai, Amit K. Chopra, Munindar P. Singh, Amoeba: A methodology for modeling and evolution of cross-organizational business processes, ACM
Transactions on Software Engineering and Methodology (TOSEM) 19 (2) (2009) 1–45.

[3] Alberto Siena, Giampaolo Armellin, Gianluca Mameli, John Mylopoulos, Anna Perini, Angelo Susi, Establishing regulatory compliance for information system
requirements: An experience report from the health care domain, in: Proceedings of the 29th International Conference on Conceptual Modeling, LNCS,
volume 6412, Springer, 2010, pp. 90–103.

[4] Munindar P. Singh, Norms as a basis for governing sociotechnical systems, ACM Transactions on Intelligent Systems and Technology (TIST), 2013, pp. 1–30.
(To appear); available at http://www.csc.ncsu.edu/faculty/mpsingh/papers.

[5] Ros Strens, John Dobson, How responsibility modelling leads to security requirements, in: Proceedings of the New Security Paradigms Workshop, 1993,
pp. 143–149.

[6] Credit card accountability responsibility and disclosure act of 2009, http://www.govtrack.us/congress/bill.xpd?bill=h111-627.
[7] Munindar P. Singh, Trust as dependence: A logical approach, in: Proceedings of the 10th International Conference on Autonomous Agents and MultiAgent

Systems (AAMAS), 2011, pp. 863–870.
[8] Paolo Bresciani, Anna Perini, Paolo Giorgini, Fausto Giunchiglia, John Mylopoulos, Tropos: An agent-oriented software development methodology,

Autonomous Agents and Multi-Agent Systems 8 (3) (2004) 203–236.
[9] Jaime SimãoSichman, Rosaria Conte, Yves Demazeau, Cristiano Castelfranchi, A social reasoning mechanism based on dependence networks, in: Proceedings

of the 11th European Conference on Artificial Intelligence, 1994, pp. 188–192.
[10] Nancy R. Mead, Joe Jarzombek, Advancing software assurance with public–private collaboration, IEEE Computer 43 (9) (2010) 21–30.
[11] Guy Dewsbury, Ian Sommerville, Karen Clarke, Mark Rouncefield, A dependability model for domestic systems, in: Computer Safety, Reliability, and Security,

LNCS, volume 2788, Springer, 2003, pp. 103–115.
[12] Steve Lipner, The trustworthy computing security development lifecycle, in: Proceedings of the 20th Annual Computer Security Applications Conference,

dec 2004, pp. 2–13.
[13] Cristiano Castelfranchi, Yao-Hua Tan, The role of trust and deception in virtual societies, International Journal of Electronic Commerce 6 (3) (2002)

55–70.
[14] Amit K. Chopra, Fabiano Dalpiaz, Paolo Giorgini, John Mylopoulos, Modeling and reasoning about service-oriented applications via goals and

commitments, in: Proceedings of the 22nd International Conference on Advanced Information Systems Engineering (CAiSE), LNCS, volume 6051,
Springer, 2010, pp. 113–128.

[15] Munindar P. Singh, Amit K. Chopra, Nirmit Desai, Commitment-based service-oriented architecture, IEEE Computer 42 (11) (2009) 72–79.
[16] Amit K. Chopra, Munindar P. Singh, Specifying and applying commitment-based business patterns, in: Proceedings of the Tenth International Conference on

Autonomous Agents and MultiAgent Systems (AAMAS 2011), 2011, pp. 475–482.
[17] Standing Committee on the Food Chain and Animal Health. Food law implementation guidelines.World Wide Web electronic publication, January 2010. Last

checked: July, 2012.
[18] Enid Mumford, A socio-technical approach to systems design, Requirements Engineering 5 (2) (2000) 125–133.
[19] Fernando Flores, Michael Graves, Brad Hartfield, Terry Winograd, Computer systems and the design of organizational interaction, ACM Transactions on

Information Systems 6 (1988) 153–172.
[20] Alistair G. Sutcliffe, Sarah Thew, Paul Jarvis, Experience with user-centered requirements engineering, Requirements Engineering 16 (4) (2011) 267–280.
[21] Gordon Baxter, Ian Sommerville, Socio-technical systems: From design methods to systems engineering, Interacting with Computers 23 (1) (2011) 4–17.
[22] Amit K. Chopra, Paolo Giorgini, Requirements engineering for social applications, in: Proceedings of the 5th International i* Workshop, CEUR Workshop

Proceedings.CEUR-WS.org, volume 766, 2011, pp. 138–143.
[23] Anne Dardenne, Axel Van Lamsweerde, Stephen Fickas, Goal-directed requirements acquisition, Science of Computer Programming 20 (1–2) (1993)

3–50.
[24] Ian Sommerville, Russell Lock, Tim Storer, John Dobson, Deriving information requirements from responsibility models, in: Proceedings of the 21st

International Conference on Advanced Information Systems Engineering, 2009, pp. 515–529, (Amsterdam).
[25] Munindar P. Singh, An ontology for commitments in multiagent systems: Toward a unification of normative concepts, Artificial Intelligence and Law 7 (1999)

97–113.
[26] Munindar P. Singh, Commitments in multiagent systems: Some history, some confusions, some controversies, some prospects, in: Fabio Paglieri, Luca

Tummolini, Rino Falcone, Maria Miceli (Eds.), The Goals of Cognition: Essays in Honor of Cristiano Castelfranchi, College Publications, London, 2012,
pp. 1–29.

[27] Peter Checkland, Soft systems methodology: A thirty year retrospective, Systems Research and Behavioral Science 17 (2000) S11–S58.
[28] Joseph Goguen, Requirements engineering as the reconciliation of technical and social issues, in: M. Jirotka, J. Goguen (Eds.), Requirements Engineering:

Social and Technical Issues, Academic Press, 1994, pp. 165–200.
[29] Yudistira Asnar, Paolo Giorgini, Fabio Massacci, Nicola Zannone, From trust to dependability through risk analysis, in: Proceedings of the Second

International Conference on Availability, Reliability and Security, 2007, pp. 19–26.
[30] Paolo Giorgini, Fabio Massacci, John Mylopoulos, Nicola Zannone, Requirements engineering for trust management: Model, methodology, and reasoning,

International Journal of Information Security 5 (2006) 257–274.
[31] Sara Jones, Marc Wilikens, Philip Morris, Marcelo Masera, Trust requirements in e-business, Communications of the ACM 43 (12) (2000) 81–87.
[32] Charles Haley, Robin Laney, Jonathan Moffett, Bashar Nuseibeh, Using trust assumptions with security requirements, Requirements Engineering 11 (2006)

138–151.
Please cite this article as: E. Paja, et al., Trust-based specification of sociotechnical systems, Data & Knowledge Engineering (2013),
http://dx.doi.org/10.1016/j.datak.2012.12.005

http://www.csc.ncsu.edu/faculty/mpsingh/papers
http://www.govtrack.us/congress/bill.xpd?bill=h111-627
http://dx.doi.org/10.1016/j.datak.2012.12.005

Paolo Giorgini is associate professor and head of the Software Engineering, Formal Methods and Security group at the Department of
Engineering and Computer Science of University of Trento. He received his Ph.D. degree from University of Ancona (Italy) and then he
joined the University of Trento as assistant professor. He has worked on the development of requirements languages and the
application of agent and goal-oriented techniques to (security) software analysis. He is co-editor in chief of the International Journal
of Agent-Oriented Software Engineering and his publication list includes more than 180 refereed journal and conference proceedings
papers and twelve edited books.

Elda Paja is a PhD student at University of Trento, Italy, under the supervision of Prof. Paolo Giorgini. She is currently involved in the
FP7 EU-sponsored research project Aniketos, Ensuring Trustworthiness and Security in Service Composition. Her research interests
include requirements engineering, conceptual modeling, socio-technical systems, and trust.

Amit K. Chopra is a Lecturer in Software Engineering at Lancaster University in the UK. His research interests lie broadly in the
software engineering of sociotechnical systems with a special emphasis on modeling requirements and architecture.

15E. Paja et al. / Data & Knowledge Engineering xxx (2013) xxx–xxx

Please cite this article as: E. Paja, et al., Trust-based specification of sociotechnical systems, Data & Knowledge Engineering (2013),
http://dx.doi.org/10.1016/j.datak.2012.12.005

http://dx.doi.org/10.1016/j.datak.2012.12.005

	Trust-based specification of sociotechnical systems
	1. Introduction
	1.1. Contributions
	1.2. Organization

	2. Sociotechnical trust
	2.1. Technical trust
	2.2. Cognitive trust

	3. A conceptual model of sociotechnical systems
	3.1. Comparing sociotechnical systems
	3.2. Patterns of trust

	4. System specification methodology
	5. Case study: the food safety regulation
	5.1. Trust specification
	5.2. Comparison

	6. Discussion
	6.1. Sociotechnical systems
	6.2. Software engineering
	6.3. Trust
	6.3.1. Future directions

	Acknowledgments
	References

