Programming Multiagent Systems without
Programming Agents

Munindar P. Singhand Amit K. Chopra

1 North Carolina State Universityi ngh@ocsu. edu
2 Universit degli Studi di Trent@kchopr a. mai | @mai | . com

Abstract. We consider the programming of multiagent systems from an archi-
tectural perspective. Our perspective emphasizes the autononetardgeneity

of agents, the components of multiagent systems, and focuses on sperify
their interconnections in terms of high-level protocols. In this manneshesy
how to treat the programming of a multiagent system as an architectdedeor,
leaving aside the programming of individual agents who might featuremnla
tiagent system as a secondary concern.

1 Introduction

This paper presents a new way of thinking about the programgmi multiagent sys-
tems. Most existing approaches either seek to apply tearditisoftware engineering or
to apply traditional artificial intelligence metaphors aatastractions. In contrast, this
paper takes a uniquely multiagent systems perspectiveclises on how to describe
the interactions among agents in a manner that facilitatisoose coupling, and thus
naturally respects their autonomy and heterogeneity.

Like traditional software engineering approaches, thisepajives primacy to in-
terfaces and contracts. But unlike traditional approaciiésrmulates these at a high
level. Like traditional artificial intelligence approachet considers high-level abstrac-
tions that need not make sense in all applications and spabjfiare not pursued in
traditional software engineering. Unlike traditionalifictal intelligence, it gives promi-
nence to social and organizational abstractions as opgosegnitive ones, and offers
a way to judge the compliance of agents.

Before we talk about what constitutes a multiagent architecit is helpful to con-
sider how architecture fits into software engineering ang @ understand it here.
An architecture is motivated by requirements of the stakeholders of theegystthat
instantiate it as well as by the environment in which it isémgiated [1]. Traditional
engineering draws an important distinction between fameti and nonfunctional re-
quirements. The former deal with functionality that is stims relevant to the problem
domain—for example, a sorting service would differ from anidhversion service on
functional grounds. The latter deal with aspects of howfimattionality is delivered—
for example, with what latency, throughput, and avail&pillThe associated idea in
traditional engineering is that all approaches would mketftinctional requirements
but architectures would largely vary based on the nonfonetirequirements that they
support [2].

However, the above distinction—although a useful one—is famfperfect. It is
not always clear, as is well known, how to distinguish fumeél from nonfunctional
requirements. For example, if we are relying upon a numlecmaputation service to
determine how much to decelerate an automobile so it avaidflision, the apparently
nonfunctional requirement of latency is very much funcéibncritical.

More importantly, when we think of a multiagent system in bread sense, it is
not at all clear whose requirements we are dealing with. Mitianal software sys-
tem would usually have multiple stakeholders: some usemsesiser advocates, some
administrators, some developers (including, for us, desig implementers, and main-
tainers). The developers are a bit of an outlier in this histhiat they are not users of
the system but they do impose requirements such as the mnaioilay of a system,
which arguably an end user has no direct interest in—at leglsinva usage episode.
However, when end users have an interest in having a systepye with evolving
requirements, maintainability becomes key to them as viRdhardless, the various
stakeholders negotiate (perhaps in absentia via the gmmlpto determine and pri-
oritize system requirements. The ultimate product—theesystis a tightly integrated
whole that ought to meet its (suitably negotiated) requéarts.

In sharp contrast with a traditional software system, itéagrally not appropriate
to think of a multiagent system as being designed in itsitgtad serve one integrated
set of requirements. This is because in a typical multiaggstem, the stakeholders
are autonomous entities and do not necessarily serve #rests of a common enter-
prise. Many of the stakeholders are projected into the desigystem as autonomous
entities, that is, as agents. These agents are generahpgeheous, meaning that they
not only exhibit diverse designs and implementations bsi ahstantiate apparently
idiosyncratic decision policies.

It is worth emphasizing this point further. We are concerwét the programming
of multiagent systems that not only involve multiple autorowus stakeholders, but also
keep those stakeholders isolated from one another in thee dbat the stakeholders
may potentially hold divergent stakes in the different comgnts. Service-oriented
applications—banking, auctions, flight reservation, eiess in general, e-health, for-
eign exchange transactions, and so on—are prime exampleglofsystems; so are
normative systems and virtual organizations. There aregddnultiagent systems, es-
pecially in cooperative applications involving distribdtsensing, teamwork, and so on,
that resemble a tightly integrated whole in the sense desgrabove. For such appli-
cations, the system is decomposed into multiple agentsubeaat some feature of the
environment, such as the distributed nature of the infaomab be obtained or actions
to be performed [3], or simply to facilitate a separation @ficerns among different ac-
tive modules [4]. Such applications do not emphasize therauhous nature of agents
and thus are not of primary concern here. In the following,tdrmmultiagent systems
refers exclusively to systems with multiple stakeholdatsleast some of whom are
isolated.

For the above reasons, traditional software architectamestheir concomitant de-
sign methodologies are not readily applicable to the desighimplementation of mul-
tiagent systems. Our present interest is to consider thectspf multiagent systems
that areunique to multiagent systems in the realm of software engineerjg Hor

this reason, we claim that any approach that focuses ortitnaali programming arti-

facts works at too low a level to be of great value. In the sagie,\any approach that
focuses on building an integrated solution is generallpjiaable for multiagent sys-
tems. In contrast to integration, we seek approaches thalh@size the interoperation
of autonomous and heterogeneous components.

Consequently, we advocate an approach for programmingageitt systems that
does not look within individual agents at all. Instead, tgiproach talks about the in-
teractions among agents. The interactions could thenmsdlgecaptured through fiat
in the worst case, through design-time negotiation amongesaf the stakeholders, or
through runtime negotiation among the participating agjéioased ultimately on some
design-time negotiation at least to nail down the languael@yed within the negoti-
ation). Our primary focus here is on the middle category ataithough the concepts
we promote can work in the other categories as well.

2 Architecture in General

Let us begin with a brief study of aarchitecture in conceptual terms. Understood ab-
stractly, an architecture is a description of how a systemrganized. This consists
primarily of the ingredients of the system, that is,dsnponents and theinterconnec-
tionsit supports among the components. &wchitectural styleis an abstraction over an
architecture. A style identifies the following:

— (Architectural) Constraints on components and interconnections.
— Patterns on components and interconnections.

An architectural style yields a description language (jfbgsalso a graphical notation)
in which we can present the architectures of a family of eglatystems and also the
architecture of a particular system.

An open architecture is one whose components can change dynamically. Therefore,
the openness of an architecture arises from its specifyiagnterconnections cleanly.
In other words, thehysical components of the architecture all kisappear; in their
stead, theogical traces of the components remain. We defirgtocols as the kinds of
interconnections that arise in open information environtse

2.1 Criteria for Judging Interconnections

The purpose of the interconnections is to support the ipemation of the components
that they connect. How may we judge different kinds of inbareections? Our assess-
ment should depend upon the level of interoperation thaittieeconnections support.

In particular, given our motivation for multiagent systeim$ection 1, we identify
the following criteria.

— Loose coupling: support heterogeneity and enables independent updatesdorn-
ponents.

— Flexibility: support autonomy, enabling participants to extract ali/iiee they can
extract by exploiting opportunities and handling excemio

— Encapsulation: promote modularity, thereby enabling independent corsctribe
modeled independently, thus facilitating requiremeratsitrg, verification, and main-
tainability.

— Compositionality: promote reuse of components across different environnaerts
contexts of usage, thereby improving developer produgtivi

We take the view that two or more componeirteroperate when each meets the
expectations that each of the others places on it. An impbiteea—due to David
Parnas from the early days of software architecture—is theataperation is about each
component satisfying the assumptions of the others [6hdaspecifically points out
that interoperation is neither about control flow nor abatadlow.

Unfortunately—and oddly enough—most if not all, subsequefttvare engineer-
ing research consideasly control or data flow. As we explained in the foregoing, such
approaches emphasize low-level abstractions that asaititd for multiagent systems.
However, considering expectations abstractly and prgpmsens up additional chal-
lenges. Specifically,

— How may we characterize the expectations of componentsdiegaeach other
except via data and control flow?

— How may we verify or ensure that the expectations of a comipioaie being met
by the others?

2.2 Protocols, Generally

The main idea is that a protocol encapsulates the interectibtowed among the com-
ponents. In this sense, a protocol serves two purposes.6amthhand, a protocobn-
nects components via a conceptual interface. On the other handhtagol separates
components by providing clean partitions among the compisngewed as logical en-
tities. As a result, wherever we can identify protocols, vaa ¢1) make interactions
explicit and (2) identify markets for components. That igtpcols yield standards and
their implementations yield products.

Let us consider protocols in the most general sense, ingudomains other than
software, such as computer networking or even power systemstworking, conven-
tional protocols such as IEEE 802.11g and the Internet Pobtoeet the above criteria.
They determine what each component may expect of the offteeg.help identify mar-
kets such as of wireless access points and routers. In pgateinss, example protocols
specify the voltage and frequency an electrical componantexpect from a power
source and the ranges of acceptable impedances it mustepetiain.

3 Proposed Approach

What are some key requirements for an architecture geareddowltiagent systems?
Clearly, the components asgents, modeled to bewtonomous (independent in their
decision making) andheterogeneous (independently designed and constructed). Fur-
ther, the environment of a multiagent system provides sufpo

— Communication: inherentlgisynchronous.
— Perceptions.
— Actions.

For Information Technology environments, we can treat fithe above as communi-
cations. The key general requirement for a multiagent syssethat its stakeholders
require the agents timteroperate. The specifics of interoperation would vary with the
domain. In our approach, these would be captured via theagessnd their meanings
that characterize the interactions among the members ofietsieed multiagent system.

3.1 Specifying Multiagent System Protocols

In light of the above criteria, we can approach the problemspacifying multiagent

system protocols in the following main ways. Following ftahal methodologies, we

can take grocedural stance, which would specify tHew of the desired interaction.

Examples of these approaches that are well-known even merupractice include

finite state machines and Petri nets. In general, the proakdpproaches over-specify
the desired interactions, thus limiting flexibility and @ding the components more
tightly than is necessary.

Alternatively, we can take declarative stance, which would specify thehat of
the desired interaction, meaning what it seeks to accomgigamples of declarative
approaches are those based on the various forms of logidicpte, modal, temporal,
and such. A logic-based approach is not necessarily higlvet than the procedural
approaches. What matters primarily or even solely is whatdmeeptual model is that
the formalization seeks to capture. We advocate declarafiproaches based on high-
level conceptual abstractions that promote loose couplimbflexibility.

Our proposed approach can be summarizedgeat communication done right.
Communication in general and agent communication in pdeticcan be understood as
involving at least the following main aspects of language.

— Yyntax: documents to be exchanged as messages. We can imaginedbesedts
as being rendered in a standardized notation such as a \lapabased on XML.

— Semantics: formal meaning of each message. We propose that at leasu$or b
ness applications, this desired meaning may be best exgrésing abstractions
based on the notion @ommitments [7]. For other situations involving multiagent
systems, the meaning could potentially be expressed vix atlitable constructs
in a like manner. However, even in nonbusiness settings;dhremitments among
agents can be valuable. In particular, the type of commitrkeown as dialectical
may be suitable for applications involving the exchangenéérmation or argu-
ments, such as negotiation [8].

Our approach places considerable weight on the idea of rizmigioperational
constraints. Our motivation for this is to enhance the fesgtisted in Section 2.1,
specifically loose coupling, which promotes autonomy antbriogeneity. From our
experience in formalizing various domains, it is worth rekirag—and it would prove
surprising to many—that few operational constraints arly tneeded to capture the
essential requirements of an application.

3.2 Ensuring Interoperation via Traditional Representations

Traditional software engineering approaches apply ontii@tevel of control and data
flow among the components. Usually the concomitant flows peeied procedurally,
although they can be captured declaratively. Regardlessieaargued in Section 2.1,
control and data flows prove to be a poor notion of interojp@naor multiagent sys-
tems. However, it is important to recognize that traditiompproachesan support
interoperation, albeit at a low level. Further, they cargpacomitant notion of compli-
ance as well.

In contrast, the traditional agent-oriented approachesedas they are on tradi-
tional artificial intelligence concepts—place onerous dedsaon the agents. Because
these approaches emphasize the cognitive concepts sudiiefs,ljoals, desires, or
intentions, they presuppose that the agents be able tojrgste at the cognitive level.
In other words, the traditional agent-oriented approachgsire that the cognitive state
of an agent be

— Externally determinable, which is impossible without violating the heterogeneity
of the agents.

— In constantmutual agreement, which is impossible without violating autonomy and
asynchrony.

Consequently, we claim that these approaches offer noeviadtion of interoperation
(or of compliance [9]). In this manner, they reflect a stegdaaads from the traditional
software engineering approaches.

For the above reasons, the BDI approachesairsuitable for architecture. They (1)
violate heterogeneity by presuming knowledge of agentmats; (2) prevent alignment
in settings involving asynchrony; (3) tightly couple theeats with each other; and (4)
lead to strong assumptions such as sincerity in commuaitdkiat prove invalid in
open settings.

3.3 Interoperation via Commitments

Commitments yield a notion of compliance expressly suitadnfiultiagent systems.

Agent compliance amounts to the agent not violating anyso€@mmitments towards

others. A protocol specified in terms of commitments doesdictate specific oper-

ationalizations in terms of when an agent should send oraxpereceive particular

messages; as long as the agent discharges its commitmeats act as it pleases [10].
We introduce some notation and elementary reasoning rofemmmitments.

— The expressiolC(debtor, creditor, antecedent, consequent) represents a commit-
ment; it means that debtor is committed to the creditor fer ¢tbnsequent if the
antecedent is brought about. For examfléBook, Alice, $12, BNW) means that
EBook is committed to Alice for the booBNW (for Brave New World) in return
for a payment of $12.

— C(debtor, creditor, T, consequent) represent an unconditional commitment. For
example ,C(EBook, Alice, T, BNW) means that EBook is committed to Alice for
the bookBNW.

— DETACH: C(z,y,r,u) Ar — C(x,y, T,u): if the antecedent holds, then the debtor
become unconditionally committed to the consequent. Famgke (reading= as
logical consequencel,(EBook, Alice, $12, BNW)A$12 = C(EBook, Alice, T, BNW).

— DISCHARGE u — —C(z,y,r,u): if the consequent holds, the commitmentlis-
charged—it does not hold any longer—no matter if it is conditional ot.rf€or ex-
ample, both of the following holdBNW = —C(EBook, Alice, $12, BNW). And,
BNW = —C(EBook, Alice, T, BNW)

The flexibility of a (complying) agent is limited by the needlihteroperate with
others. To fully exploit the flexibility afforded by commients, we must necessarily
formalize interoperability in terms of commitments. Fomié continued to rely upon
the notions of interoperability as formalized for compoiserin terms of a component
being able to simply send and receive messages as assumdteby-ewe would be
introducing operational constraints on the communicagimong agents, thus limiting
their flexibility.

To motivate our definition of interoperation in terms of coitmrents, we observe
that there are two primary sources of asymmetry in a multibggstem. On the one
hand, communications are inherently directed with theatibe of causality usually
being treated as flowing from the sender to a receiver (buBa&doniet al. [11] for a
more general, alternative view). On the other hand, comaritshare directed with the
direction of expectation being from the creditor of a conmant to its debtor.

Accordingly, we propose a notion of interoperation that wart (commitment)
alignment [12]. Alignment, as we define it, is fundamentally asymneetfihe intu-
ition it expresses is that whenever a creditor computed ghanfers) a commitment,
the presumed debtor also computes the same commitment.ofitnalization of this
definition involves some subtlety, especially on the nottbmwhat we mean byvhen-
ever. Specifically, we capture the intuition that at the momemtsystem snapshots at
which we judge the alignment or otherwise of any two agentsyvake sure that the
agents have received the same relevant information. Thuseakages sent must have
been received, and each agent ought to have shared any @ifonnt has received that
is materially relevant to the commitments in which it pagates. In particular, a cred-
itor should propagate information about partial or totabdements, which strengthen
a commitment. And, a debtor should propagate informatia@ugpartial or total dis-
charges, which weaken or dissolve a commitment.

In this manner, our approach can achieve alignment ever ifate of asynchrony—
meaning unbounded message delays but messaging that ispoederving for each
pair of sender and receiver. The approach works as followsn/dhdebtor autonomously
creates a commitment, it sends a corresponding messag# edentually lands at the
creditor. Here the debtor is committed before the crediéarns of the debtor being
committed, so alignment is preserved. When a creditor detagltommitment, thereby
strengthening it, a message corresponding to the detaokuey arrives at the debtor.
Here the debtor is committed when it receives the detachagess

The foregoing motivates a treatmentapliescence wherein we only consider well-
formed points in executions where each message has landesh &\debtor or creditor
learns that a commitment is discharged or detached, resggctt must immediately

notify the other i{ntegrity, which ensures no quiescence until the information has-prop
agated).

In broad terms, our ongoing research program calls for theldpment of what we
term CSOA, a commitment-based service-oriented architecture [@S[A is focused
on the notion of aervice engagement. When thought of in business terms, a service en-
gagement involves multiple business partners carryingxtensive, subtle interactions
in order to deliver value to each other. Business servicesodoe contrasted with tech-
nical services such as on Web or the Grid, which emphasizerltevel questions of
connectivity and messaging without regard to the businesteat of the interactions.

CSOA: Commitment-Based Service-Oriented Architecture

Agent Communication

Commitments

Domain Model

Fig. 1. Proposed architecture schematic, conceptually

Figure 1 shows how we imagine the layers of our architectumnceptual terms.
For a given application, thdomain model describes the roles involved and the vocab-
ulary, including the business documents that agents adptite role would exchange.
The commitments layer understands the documents in terms of their busiregsmts.
The agent communication layer deals with the primitive commitment operations such
asCreate, Delegate, and so on, and other communication primitives sucRegiest,
Declare, and so on; the primitives in this layer would be more or l¢aadard. Finally,
the CSOA layer deals with composite service engagement patteriistoun the prim-
itive commitment operations. For example, a book-sellipglization would involve at
least the rolesBuyer and Seller. An Offer for some book from theSeller could be
mapped to a commitment from tt#ller to the Buyer, similar to the one above from
EBook to Alice. A CSOA pattern for the book-selling applioatcould encode refunds
from the Seller.

4 Programming Multiagent Systems

Based on the foregoing, we can now introduce a conceptuallightforward way in
which to program a multiagent system.

4.1 Step 1: Specify the Communications

We define a protocol and specify it as follows.

— Specify roles to describe abstracted versions of the agamtswill participate in
the multiagent system at runtime.

— Specify messages as the surface communications amongygeads of roles.

— Specify the meanings of each message declaratively in tefic@mmitments and
other relevant propositions.

— Specify any additional constraints on the messages sudieahventions of the
relative orders among the messages, and how informatiosiedan one message
flows to another message in the protocol.

The above commitment-based specification approach ismabkofor the following
reasons. Based on the notion of commitments, we can unamisgyudetermine if a
particular enactment satisfies the specified protocol oMietcan also determine if any
of the agents is noncompliant. Further, if needed, we caneefind compose protocols
to produce protocols that better address our stakeholdaireanents.

4.2 Step 2: Instantiate the System

The next step in this methodology is to instantiate and cardiga multiagent system
S0 as to be able to enact its computations. To instantiateaact a multiagent system,
identify agents to play roles in the protocol that charazés the multiagent system.
We refer to a unique protocol because when there are mufiipl®cols, they can be
considered for this discussion as having been composedistogle definitive pro-
tocol. In practice, we do not require the creation of a mdhilicomposed protocol.
The instantiation of a multiagent system could proceed drieree ways in terms of
the agents who are involved. These agents could be any catidrirof (1) preexisting
agents proceeding on their own initiative; (2) newly insitzed agents based on preex-
isting code-bases; and (3) custom-designed agents tdsuiieieds of the stakeholders
who contribute them to the multiagent system. Differenketelders could follow any
of the above approaches in constructing the agents theyriidie given system. In any
case, each agent would apply the decision-making polididseostakeholder whom it
represents computationally within the multiagent system.

4.3 Enactment and Enforcement

The agents collectively enact this programming model byiddally applying their
policies to determine what messages to send each otherpfareed above, the mean-
ing of each message specifies how it corresponds to opesatipoommitments.

The above approach can be readily realized in runtime tedigsh can be thought
of as commitment middleware [14]. The middleware we envdsaguld offer primitives
encapsulated as programming abstractions by which each cae

— Communicate with other agents.

— Maintain the commitments in which it features as debtor editor.

— Propagate the information necessary to maintain alignammoing the agents.
— Verify the compliance of debtors with commitments whera ithie creditor.

Such a middleware would enable writing programs directlyeirms of commit-
ments. Instead of an agent effecting communication witerstkhrough such low-level
primitives assend andreceive, the agent would perform commitment operations.

Our commitment-based architecture does not require tleat the a central author-
ity to enforce commitments. In general, in settings withoaoimous agents, no agent
can be sufficiently powerful to force another agent to act@e@ain manner. Enforce-
ment in such settings realistically amounts to arbitratiad applying penalties where
appropriate.

A commitment is made in a certagontext, which defines the rules of encounter
for the agents who feature in it [13]. We model the context msagent in its own
right. Viewed in this light, the context can perform sevaraportant functions, not
necessarily all of them in the same setting. The context eaa mmonitor for tracking
commitments, which assumes it observes all communicatidternatively, the context
may serve as arbiter for any disputes between the contrpettids.

In some settings, the context may also act as a sanctionep&ralizes agents who
violate their commitments. The context may cause ap@wlty commitment (with the
same debtor as the violated commitment) to come into foréi@nbkely, there is little
the context can do, except possibly to eject a malfeasamit digem the interaction.
The context may observe the violation itself or may learnt &fdm the creditor, who
would have escalated the commitment to the context. For pkara buyer on eBay
(the marketplace) may escalate a dispute with a seller ty ¢fBa corporate entity,
serving as the context). The protocol for escalating angutés resolutions may be
considered as part of a larger Sphere of Commitment [15]. d¥ew often, penalties
are left unspecified. For example, a buyer’s agent may simqtify the buyer that the
seller has violated some commitment, at which point the bmeegy take up the matter
with eBay. A more common approach is to use reputation asma érsocial censure
for malfeasant agents. In well-structured settings suatBay, which might support a
notion of reputation, there is also the option of ejectingafeasant agent.

Sphere of Commitment

Commitment Middleware

Messaging

Fig. 2. Proposed architecture schematic, operationally

Figure 2 illustrates a way to operationalize our architexin schematic terms. A
commitment middleware resides above messaging and malethatiagents maintain
their alignment by exchanging relevant information. Therag function within a suit-

ably powerful sphere of commitment which, as explained abgetentially ensures
they comply with their commitments.

4.4 Summary of Benefits

We highlight the benefits of our approach according to theeida presented in Sec-
tion 2.1. Formalizing interoperability in terms of commént alignment promotes a
looser coupling among agents than is possible with traditionakagghes. In partic-
ular, many of the message ordering constraints that arealypitaken for granted in
real-life applications, for example, that taeceptor therejectof an offer must follow
the offer, are no longer necessary. In effect, when we loosely cougsets, they can
update their commitments independently of each other.

Commitments support a high-level notion of compliance, #n$ support flexible
enactment. In earlier work on commitments, the flexibilifjoeded by commitments
could not be fully exploited as concerns of concurrency obett the picture somewhat.
With interoperation formalized in terms of commitmentseaig can fully exploit this
flexibility.

Encapsulation and compositionality have to do with the iefficsoftware engineer-
ing of protocols [16]. In essence, each protocol is a discaetifact, independent from
requirements and from other protocols. A protocol may theisrtade available in a
repository, and depending on a particular applicationtgpiements, composed with
other protocols and instantiated.

5 Discussion: Conclusions and Future Work

First, we observe that existing multiagent systems engimg@pproaches, in attempt-
ing to develop practical systems, adopt traditional saftnengineering ideas whole-
sale. In this manner, they tend to neglect the key featusctiaracterize multiagent
systems, specifically, the autonomy and the heterogenkthew participants.

Second, when existing approaches recognize the hightetate of the descrip-
tions of agents and their interactions, they seek to diffigae themselves from tradi-
tional software engineering by introducing concepts froaditional artificial intelli-
gence, specifically, concepts such as beliefs, goals (aredgsand intentions. In this
manner, they continue to poorly accommodate the asynchaatgnomy, and hetero-
geneity that characterize real-life multiagent systems.

We advocate an approach in which high-level concepts yigiet¢onnections that
support multiagent system applications. These conceptsamtered on commitments
and help model the interactive nature of multiagent syseinestly. A key challenge is
that we realize such concepts correctly in order to achietexoperation.

The key to building large-scale multiagent systems liesdacmately formalizing
agent communication, not the internal decision making efég Whether an agent is
capable of reasoning about beliefs or whether the agenteisifigdl as an automaton
is neither relevant nor discernible to another agent. Ardbl development would
be if both agent communication and reasoning could be spddifiterms of high-level
abstractions, and the runtime infrastructure would diyestpport the abstractions. This

would obviate the need to translate between different $swkEhbstraction, as advocated
in model-driven approaches, and would truly usher in thecdiggent-oriented software

engineering. For this, we would have to formally relate ageasoning with agent

communications. This challenge is beginning to be adddesst¢he recent literature

[17,18].

Considerations of multiagent systems require fresh agpesain requirements mod-
eling. Instead of classifying requirements simply as figral or nonfunctional, one
also needs to consider whether the requiremertrig actual—implying a commitment
between two of the stakeholders—or noncontractual. A requént could be functional
and contractual (for example, EBook’s offer entails suctomitment), or nonfunc-
tional and contractual (for example, the requirement thatliook be delivered using
priority service), and so on. Indeed, as pertains to mudtiagystems, the contractual
dimension seems to be more significant than the functioral on

In business engagements, the context plays an importartibinstills some mea-
sure of confidence in compliance by the interacting partiesommitments of a per-
sonal nature, the context may be implicit. Further, therg nwd be any explicitly spec-
ified penalty commitments. For example, if Rob commits t&ipig up Alice from the
airport, but does not show up on time, Alice may cancel henelirengagement with
him or she may simply note Rob to be unreliable. The point taaken here is that
commitments are valuable because they enable reasoning@bopliance; their value
does not derive from their being enforced or not. Neitheraftgmor arbitration are
semantically integral to commitments.

5.1 A Remark on Notation

Architectural approaches inherently lead to ways to dbsystems. Thus they natu-
rally lead and should lead to notations. Notation, althaugbortant, remains secondary
to the concepts. When we describe an architecture, whatmmattgt are the concepts
using which we do so. It is more important to develop a suitabktamodel than to
specify a detailed notation that lacks an appropriate medisin

We notice a tendency in agent-oriented software engingeninere, in attempt-
ing to develop practical systems, researchers adoptitraditnotations wholesale as
well. There is indeed value in adopting traditional notasiobutonly where such no-
tations apply. The field of multiagent systems exists—andanesh into the subfield of
programming multiagent systems is a worthwhile endeavorty-bacause traditional
approaches are known to be inadequate for a variety of peddtiformation systems,
especially large-scale open, distributed systems. Inrotloeds, existing notations are
not complete for these purposes. Therefore, a worthwhifgribmtion of multiagent
system research is to invent suitable notations backed @pmessive metamodels.

5.2 Directions

CSOA is an architecture style that treats business (nonteah services as agents,
and includes patterns for service engagements. Along ties bf CSOA, we have re-
cently begun to develop a business modeling language [1W$ [Anguage is based
on a metamodel that provides first-class status to busirstsgps and their respective

commitments, expressing their contracts. It also incllgsport for some CSOA pat-
terns such as for delegating commitments that are core tprémse, yet high-level
specification of a service engagement.

Upcoming research includes a study of ways in which to expaesultiagent sys-
tem in terms of the business relationships among agentsragotoerates of commit-
ments, and formal methods to verify the computations redlizith respect to business
models.

Acknowledgments

Munindar Singh'’s research was partially supported by thel Research Council. Amit
Chopra’s research was partially supported by the Intedraf6-EU project SEREN-
ITY contract 27587.

References

1. Zachman, J.A.: A framework for information systems architectdiB Systems Journal
26(3) (1987) 276—292
2. Filman, R.E., Barrett, S., Lee, D.D., Linden, T.: Inserting ilities bptcolling communica-
tions. Communications of the ACMI5(1) (2002) 116-122
3. Durfee, E.H.: Practically coordinating. Al Magazi2@(1) (Spring 1999) 99-116
4. Singh, M.P., Huhns, M.N.: Automating workflows for service psaning: integrating Al
and database technologies. |IEEE Ex9¢5) (October 1994) 19-23
5. Huhns, M.N., Singh, M.P., Burstein, M.H., Decker, K.S., @erfE.H., Finin, T.W., Gasser,
L., Goradia, H.J., Jennings, N.R., Lakkaraju, K., NakashimaPdrunak, H.V.D., Rosen-
schein, J.S., Ruvinsky, A., Sukthankar, G., Swarup, S., Sy&ar, Tambe, M., Wagner,
T., Gutierrez, R.L.Z.: Research directions for service-orientettiagent systems. IEEE
Internet Computin@(6) (November-December 2005) 6570
6. Parnas, D.L.: Information distribution aspects of design methoglolngProceedings of the
International Federation for Information Processing CongressnIlTA-3., Amsterdam,
North Holland (1971) 26-30
7. Singh, M.P.: An ontology for commitments in multiagent systems: Tdwaaunification of
normative concepts. Artificial Intelligence and L&) (March 1999) 97-113
8. Singh, M.P.: Semantical considerations on dialectical and practeoainitments. In: Pro-
ceedings of the 23rd Conference on Artificial Intelligence (AAAI), Glgjo, AAAI Press
(July 2008) 176-181
9. Singh, M.P.: Agent communication languages: Rethinking the prirecipieEE Computer
31(12) (December 1998) 40-47
10. Yolum, P., Singh, M.P.: Flexible protocol specification and exenuApplying event calcu-
lus planning using commitments. In: Proceedings of the 1st Internatiomat Conference
on Autonomous Agents and MultiAgent Systems, Bologna, ACM Pre$s2002) 527-534
11. Baldoni, M., Baroglio, C., Chopra, A.K., Desai, N., Patti, V., $in§l.P.: Choice, interoper-
ability, and conformance in interaction protocols and service chorpbgs. In: Proceedings
of the 8th International Joint Conference on Autonomous Agents arltiAdaent Systems
(AAMAS), Budapest, IFAAMAS (May 2009) 843-850
12. Chopra, A.K., Singh, M.P.: Multiagent commitment alignment. Immc@edings of the 8th
International Joint Conference on Autonomous Agents and MultiAggstegns (AAMAS),
Budapest, IFAAMAS (May 2009) 937-944

13. Singh, M.P., Chopra, A.K., Desai, N.: Commitment-based sewitented architecture.
IEEE Computed2(11) (November 2009)

14. Chopra, A.K., Singh, M.P.: An architecture for multiagent systesm approach based on
commitments. In: Proceedings of the 7th International Workshop ogr&mming Multia-
gent Systems (ProMAS). LNCS, Springer. This volume.

15. Singh, M.P.: Multiagent systems as spheres of commitment. InePdings of the Interna-
tional Conference on Multiagent Systems (ICMAS) Workshop on No@idigations, and
Conventions. (December 1996)

16. Desai, N., Chopra, A.K., Singh, M.P.: Amoeba: A methodolagyrfiodeling and evolution
of cross-organizational business processes. ACM Transactidbgfomare Engineering and
Methodology (TOSEM1L9(2) (October 2009) 6:1-6:45

17. Telang, P.R., Singh, M.P.: Business modeling via commitment®réteedings of the 7th
AAMAS Workshop on Service-Oriented Computing: Agents, Semantitd,Engineering
(SOCASE). LNCS907, Springer

18. Robinson, W.N., Purao, S.: Specifying and monitoring interact&ms commitments in
open business processes. |[EEE Softv@) (March 2009) 72—79

