Elements of a Business-Level Architecture for
Multiagent Systems

Amit K. Chopra and Munindar P. Singh

1 Universita degli Studi di Trentakchopr a. mai | @mai | . com
2 North Carolina State Universityi ngh@ocsu. edu

Abstract. Existing architectures for multiagent systems emphasizelével
messaging-related considerations. As a result, the progiag abstractions they
provide are also low level. In recent years, commitmentg ieen applied to sup-
port flexible interactions among autonomous agents. Weepteslayered mul-
tiagent system architecture based on commitments. In thfgtacture, agents
are the components, and the interconnections between ¢émésagye specified in
terms of commitments, thus abstracting away from low lewshils. A crucial
layer in this architecture is a commitment-based middlevthat plays a vital
role in ensuring interoperation and provides commitmetdted abstractions to
the application programmer. Interoperation itself is dediim terms of commit-
ment alignment. This paper details various aspects of thigtacture, and shows
how a programmer would write applications to such an archite.

1 Introduction

An architecture is an abstract description of a system. The fundamentaldtiea ar-
chitecture is that it identifiesomponents and theirinterconnections[1]. An open archi-
tecture is one that emphasizes the interconnectionsnigéve components unspecified
except to the extent of their interconnections. In this neangn open architecture yields
systems whose components can be readily substituted byagihmponents.

When we understand multiagent systems from the standpbartchitecture, it is
clear that the components agents (or, rather, abstractiyoles). Traditionally, the inter-
connections have been modeled in operational terms derioedan understanding of
distributed systems. Consequently, the multiagent systhat result are over-specified
and behave in an inflexible manner. With such systems, iffiicwuli to accommodate
a richer variety of situations. What is required is the sfieaiion of interconnection in
terms of higher-level abstractions.

For concreteness, we consider cross-organizational éssiprocesses as an ap-
plication of multiagent systems that provide the happy nfisignificance and com-
plexity to demonstrate the payoff of using the proposed @gqgr. The last few years
have developed compelling accounts of the fundamentahauty and heterogeneity
of business partners, and the concomitant need to mode freetners’ interest. The
related studies of interaction protocols hint at how we rgygineer multiagent sys-
tems in such settings [2—4]. A feature of these approachibsiishasis in commitments.
Commitments yield a business-level notion of compliansdoag as agents discharge
their commitments, they are free to interact as they plddseever, the relationship of

protocols with architectures has not yet been adequatetigedioout. This requires an
understanding of interoperability in terms of commitments

We make a fresh start on multiagent systems via an architedince we realize
that we would only consider the components as agents underfiexibly, the associ-
ated interconnections must inevitably be the businestaakhips between the agents.
One can imagine that some notional business value flows sastash relationships,
just as data flows over the traditional connectors of digtetd computing. Thinking of
the business relationships as interconnections yieldsanitecture for what we term
service engagements [5].

The above architecture is conceptual in nature. Two naturastions arise: what
programming abstractions does the architecture suppatthaw may we operational-
ize it over existing infrastructure that is no differentdidhat underlying traditional
approaches. Answering the above questions is the mainilootidn of this paper.

1.1 Middleware: Programming Abstractions

From a top-down perspective, an important layer of any &chire is middleware.
Middleware supports programming abstractions for theitecture in a way that en-
sures interoperability between components in the ardhitecA relatively simple mid-
dleware is one that provides reliable message queuingcesivireeing the program-
mer from the burden of, for example, implementing persiststarage and checking for
acknowledgments. These days, reliable message queuiastisrje of many abstrac-
tions supported in enterprise middleware. In cross-omgitinal business processes,
the common middleware is centered on the abstractions ofagexy. The resulting
architectural style is termed thgnterprise Service Bus (ESB). ESBs emphasize mes-
saging abstractions and patterns—for example, Apache ICGamports the enterprise
integration patterns in [6]. Further, ESBs support an edeiven architecture so as to
promote loose coupling between business applicationssE®@/ide various kinds of
translation services, routing, and security, among othiegs, thus saving the applica-
tion programmer a good deal of repetitive effort. Some ESBlémentations, such as
provided by Oracle, also support business protocols suBtoasttaNet [7].

Ideally, middleware should offer abstractions that follcsely the vocabulary of
the domain. ESBs purportto support business applicatimveever, they lack business-
level abstractions. The abstractions they support, @gRdsettaNet, involve message
occurrence and ordering but without regard to the meanifigheomessages. Thus
RosettaNet can be thought of as a protocol grammar. Oth&squis, e.g., Global Data
Synchronization Network (GDSN) [8], would correspond tealative grammars. Each
grammar is arbitrary and its correctness or otherwise isipdor consideration.

Figure 1 shows the conceptual arrangement of a servicaetedarchitecture based
on such ESBs. Programmers design busipessesses (for example, in BPEL) based
on a public interface specification (for example, in WS-CDlbased on a protocol
such as RosettaNet). Messaging-based middleware, suasastdd above, hides the
details of the infrastructure from process programmers.

Processes

Messaging-Based Middleware

Messages (Realized by the Communication
Infrastructure)

Fig. 1. Current enterprise middleware, conceptually

1.2 Overview of Approach

We assume a conventional infrastructure based on messagitiyas is already made
available by middleware such as the Java Messaging Semvitgpecified in the emerg-
ing standard known as the Advanced Message Queuing Pratabt®P) [9]. This
infrastructure supports point-to-point messaging ovemciels that preserve pairwise
message order and guarantee eventual delivery. It is igpioid emphasize that such
infrastructure is commonly available in existing implertegions.

Business Meanings

Commitment-Based Protocol Middleware

Messages (Realized by the Communication
Infrastructure)

Fig. 2. Commitment middleware, conceptually

The essential idea underlying our approach is that we cawtiew system archi-
tecture at two levels of abstraction: business and infuasire. The business level deals
with meaning whereas the infrastructure provides the djperaization. Accordingly,
we view the function of middleware as bridging this concapgap. Figure 2 shows that
our middleware lies in the middle between meaning and m@sgaly our approach,
business meaning is expressed in terms of commitments. @orents arise in virtu-
ally all cross-organizational business applications.sTheasoning about commitments
would be applicable to all of them. Commitments underlie waorectness criteria:
compliance andalignment. Agents are compliant as long as they discharge their com-
mitments; such a notion of compliance naturally takes iimoant agents’ autonomy.
Agents are aligned as long they agree on whatever commignasninay result from
their communications. Alignment is, in fact, a key form ofsmess interoperability
[10,11].

The proposed middleware provides commitment-based alisina. The middle-
ware supports not only the basic commitment operations [iff]also high-level pat-
terns that build on the commitment operations. The middieveasures that if applica-
tions are determined interoperable at the level of busimesming, then infrastructure-
level concerns such as asynchrony do not break the inteabiigy.

1.3 Contributions

The contribution of this paper lies in making explicit thelasitecture that commitment
alignment, as a notion of business-level interoperabititypports. This includes the
specification of agent interfaces and the question of trainpatibility, the design of
the middleware that bridges between the business leveltanéhfrastructural level,
and the programming abstractions that are made availallegiication programmers.
In all of these elements, the architecture presented isfisigntly different from cur-
rent multiagent architectures. We also outline how the feiddre may be extended
with common business patterns and additional kinds of aligmt. To illustrate how
the architecture supports a new way of programming, consiae traditional agent
communication is treated simply in terms of sending andivetgmessages. However,
with our proposed architecture, it would be possible to deammmunication in terms
of commitment operations and patterns. The benefit acceugfdiinature similar to that
accrued by being able to write agents (their internal reiagpim particular) in terms of
BDI abstractions rather than low-level procedural absivas.

The rest of this paper is organized as follows. Section 2 ri@sx commitments
formally, what alignment means, and why misalignments nc8ame misalignments
can be detected at the level of business meanings by a stafigses of the interfaces,
whereas others that occur due to the nature of distributstdis)s must be prevented
by careful design of the middleware. Section 3 describes@ritacture based on com-
mitments. It describes the components and the intercoiomscand the layers in the
architecture. Section 4 describes a sample set of usefidrpatthat the middleware
supports. Section 5 discusses the relevant literature.

2 Commitment Alignment

Interoperability among participants means that eachqpatnt fulfills the expectations
made by the others. To understand an architecture, it isritapioto understand what
interoperability in the architecture means. In our apphga@mn agent represents each
participant, and the expectations of an agent take the fdroommitments. Existing
work on service interoperability treats expectationslgaéthe level of messages [13—
15].

Let us explain how commitments yield expectations. A commaitt is of the form
C(debtor, creditor, antecedent, consequent), wheredebtor and creditor are agents,
and antecedent and consequent are propositions. This means that the debtor commits
(to the creditor) to bringing about the consequent if theaatlent holds. For example,
C(EBook, Alice, $12, BNW) means that EBook commits to Alice that if she pays $12,
then EBook will send her the boddrave New World. Agents interact by sending each

other messages. The messages have meanings in terms ofédyouaffect the agents’
commitments toward each other. For example, an offer medsam EBook to Alice
may bring about the aforementioned commitment.

Now imagine that at some point in their interaction, Alicéirs that EBook is com-
mitted to sending her the book she paid for, but EBook infersuch commitment.
Their interaction would break down at the level of busineganing. In other words,
Alice and EBook would not be interoperable. In general, atdezguirement for inter-
operability is that the interacting agents remain alignétth wespect to their commit-
ments. Commitment alignment is a key form of business-lmteloperability. Agents
are aligned if whenever one agent (as creditor) infers a coment from a second
agent, the second agent (as debtor) also infers that conemitifi we can guarantese
priori that agents never—at no point during any possible intevaetiget misaligned,
only then the agents are interoperable.

In general, agents may get misaligned because of tiesérogeneity, autonomy,
anddistribution.

Heterogeneity Agents may assign incompatible meanings to the messaggsitae
exchanging. To be able to successfully interact, the ageuss agree on what their
communications count as. Heterogeneity is the cause ofligrisaent in Exam-
ple 1.

Example 1. For Alice, an Offer message from EBook counts as a commitment
from EBook to ship a book in return for payment. Whereas foio&B Offer
does not count as any such commitment; but an expliciteptfrom Alice does.
Thus, when EBook sends Alice affer message, Alice infers the commitment,
but EBook does not—a misalignmédht.

Heterogeneity is addressed by statically analyzing if titerfaces of agents are
compatible [10].

Autonomy Agent autonomy must be accommodated; however, accommgdazti-
tonomy is nontrivial. The reason is that autonomy operatigrmeans that they
are free to send messages. In turn, this means that comrtionibatween agents
is asynchronous. Thus, in general, agents may observe gesssalifferent orders.
Since messages are understood in terms of their effectsomitments, the agents
involved may become misaligned. This is the cause of misaignt in Example 2.

Example 2. EBook sends a®ffer to Alice, where the offer means a commitment
that if Alice pays, then EBook will send the book. Alice setlds payment (mes-
sage) for the book. Concurrently, EBook cancels the offesdndingCancelOffer
Alice observes EBook’s cancellation after sending the payrso she regards it as
spurious. EBook observes Alice’s payment after sendinggiteellation, so EBook
considers the payment late. As a result, Alice infers thadd&@Bis committed to
sending her the book, but EBook does not infer that commitmiEmus, EBook
and Alice are misaligned.

An ideal approach to addressing the challenge of autonomwyldhlwork without
curbing autonomy. In contrast, existing approaches tooréag about commit-
ments in distributed systems typically rely on some kindyofchronization proto-
col; synchronization, however, inhibits autonomy. Chapord Singh [11] formalize
the inferences made upon observing commitment-relatedages in such a way
that, in spite of autonomy, agents remain aligned.

Distribution In a distributed system, some agents may have more infasmabout
relevant events than others. This is the cause of misalighiné&xample 3.

Example 3. Alice commits to Bob that if the sky is clear at 5PM, then shitmveet
him at the lake. At 5PM, Bob observes (a message from theamwient) that the
sky is clear, and therefore infers that Alice is uncondiilbhhcommitted to meeting
him at the lake. However, Alice does not know that the skyéagland therefore
does not infer the unconditional commitment. Bob and Alieetaus misaligned.

Chopra and Singh [11] statetegrity constraints, which are constraints upon agent
behavior necessary to handle distribution. The constairg of two kinds: (1) a
debtor must inform the creditor about the discharge of a citmemt, and (2) a
creditor must inform the debtor about the detach of a commnitirOne should not
consider alignment until such information has been profeha

2.1 Characterizing Alignment

A set of agents is aligned if in all executions,agpropriate points during their exe-
cution, if a creditor infers a commitment from its obsereas, the debtor also infers
the commitment from its own observations [11]. An “appragel’ point in the execu-
tion of a multiagent system is given by consistent obsemnatiof the various agents
where two additional properties hold. One, alignment may be considered at those
points where no message is in transit. Such points are tegmestent. Two, alignment
may only be considered at those points thatiaragral with respect to the stated infor-
mation propagation constraints. The motivation behindaibeve properties is simply
that it would surprise no one if two agents failed to infer amittg commitments when
they had made differing observations: either because soassage was in transit that
only its sender knew about or because some message was fharsksome agent had
withheld material facts from another.

2.2 Background on Commitments

A commitment is of the fornC(z, y, 7, u) wherez andy are agents, and andu are
propositions. If- holds, therC(z, y, r, u) is detached, and the commitmeri(z, y, T, u)
holds. Ifu holds, then the commitment discharged and doesn’t hold any longer. All
commitments areonditional; an unconditional commitment is merely a special case
where the antecedent equdls Singh [16] presents key reasoning postulates for com-
mitments.

The commitment operations are reproduced below (from [TREATE, CANCEL,
andrRELEASEare two-party operations, whereasLEGATE andAsSIGNare three-party
operations.

CREATE(z, y, r,u) is performed byr, and it cause§(z, y, , u) to hold.
CANCEL(z, y, r, u) is performed byz, and it cause€(z, y, r, u) to not hold.
— RELEASHz,y,r,u) is performed by, and it cause€(z, y, r, u) to not hold.
DELEGATE(z, y, z, 7, u) is performed byr, and it cause€(z, y, r, u) to hold.
ASSIGN(z,y, z, 1, u) is performed by, and it cause€(z, z, r, u) to hold.

Let us define the set of messages that correspond to the lmsinioment opera-
tions. Let® be a set of atomic propositions. In the commitment operatioandu are
formulas ove® usingA andV. Create(x,y,r,u) and Cancel(z, y,r,u) are messages
from z to y; Release(z,y,r,u) from y to x; Delegate(x,y, z,r,u) from z to z; and
Assign(x,y, z,r,u) fromyto z. Suppose = C(z,y, r,u). ThenCreate(c) stands for
Create(z,y,r,u). We similarly defineDelegate(c, z), Assign(c,z), Release(c), and
Cancel(c). Inform(x,y,p) is a message from to y, wherep is conjunction overp.
Observing anlnform(p) cause® to hold, which may lead to the discharge or detach
of a commitment.

Below, letcg = C(E Book, Alice,$12, BNW); c¢ = C(EBook, Alice,$12, GoW);
¢o = C(EBook, Alice,$12, BNW A GoW). (BNW stands for the booBrave New
World; GoW stands for the bootrapes of Wrath).

3 Multiagent System Architecture

Agent N Agent

Business Meanings

& =
S L] L \g
& %
Commitment | Communication Commitment | Communication
Store Constraints Store Constraints

Communications via nonlossy, noncreative,
pairwise FIFO queues

Fig. 3. Understanding Commitment-Based Architecture

Figure 3 shows our proposal for a multiagent system ardhitecAt the level of
business meaning, the components are the agents in thensyegpeesenting the in-
teracting business partners. As pertains to programmiimg wair architecture, at the

top, we have agents and at the bottom the communication; ldngeemiddleware sits in
between. This layered architecture is characterized t@etkinds of interfaces.

— Atthe business level, the interface is between agents angbiessed via meanings.
The business analyst and the software developer who pragrsimg commitments
would think at this level (of business relationships), aralid be unaware of any
lower layer.

— Atthe implementation level, the interface is between outdtéware and the com-
munication infrastructure and is based on traditional mgisg) services. In a tra-
ditional distributed system, a software developer wouldd® think at this level.
In our approach, only the implementor of our middlewarekhkiat this level.

— Between the agent and the middleware, the interface islaigéerms of instruc-
tions from the agent to the middleware: when an agent tedlgtidldleware to apply
a commitment operation or one of the additional patterngdas commitments
such agscalate (patterns described later).

Two nice features of our approach are that (1) the instrosticse the same vocabulary
as the business meanings and (2) we specify middleware tlaaaigtees alignment as
long as the instructions are limited to the commitment ofj@na or patterns. Below, we
describe each components (agents), interconnectiomsfénes), and layers in detail.

3.1 Agents

Agents represent business partners. They provide and menseal-world services by
participating in service engagements. The principal etemef interest in an agent are
its interface and its reasoning engine.

Interface Anagent’s interface describes the messages it expectshaege with other
agents, along with the business meanings of such messadss.ITshows Alice’s in-
terface specification. The left column is the actual protedtereas the right column
shows a traditional understanding of those messages. Bon@g,Create(EBook, Alice,
$12, BNW') message from EBook to Alice corresponds to an offer from EBoo

Table 1. An example interface for Alice

Commitment Protocol Message |Traditional Message

Create(EBook, Alice, $12, BNW) |Offer(EBook, Alice,$12, BNW)
Create(Alice, EBook, BNW ,$12) |Accept(Alice, EBook, BNW , $12)
Release(EBook, Alice, $12, BNW)|Reject Alice, EBook,$12, BNW)
Inform(EBook, Alice, BNW) Deliver(EBook, Alice, BNW)
Inform(Alice, EBook, $12) Pay(Alice, EBook, $12)

The interface shown in Table 1 is admittedly quite simplehattit does not talk
about the penalties for the violation or cancellation of enodtment. Penalties would
be encoded as additional commitments in the interface.

Notice that the interface does not contain some of the pureédonstructs com-
monly found in interface description languages or protscslich as sequence, choice,
and so on. For example, it does not say, that upon observinff@mAlice has achoice
between accepting or rejecting the offer—there is simplyneed to say so. A re-
jection sent after Alice accepts the offer and EBook sendsbtbok should have no
effect—Alice should remain committed to pay. The formaiiza of commitments in
[11] captures such intuitions, and makes the statemenbefgiural constructs in inter-
faces largely unnecessary. A second reason such consradtgroduced is to simply
make the interaction synchronous. However, such constaretrendered superfluous
by the approach for reasoning about commitments in asynolsettings [11]. Fi-
nally, threading constructions such as fork and join arartfémplementation details,
and have no place in an interface. Of course, if an applicatEemands a procedural
construct, it could be introduced. For example, Alice maytngst booksellers and her
interface might constrain delivery of books before paymalice will then be noninter-
operable at the messaging-level with booksellers who requayment first; however, it
would not affect alignment, that is, commitment-level hojgerability [17].

As described earlier, misalignments arise when agentéhasacompatible mean-
ings to messages. An application programmer would speaifinterface and publish
it. Before interacting with other agents, the agent woulspmably check for compat-
ibility with the other agents.

Engine The engine drives the agent. It represents the privateipslid the agent; these
govern when an agent should pass an instruction to the mvddée how instruction
parameters should be bound, how an agent should handleedtcallbacks (described
below) and so on. In fact, the engine is the place for all trecedural details. For
example, Alice’s policy may enforce a choice between acapgtreject upon receiving
an offer, or dictate that payment be sent only after recgibimoks.

Writing the engine is where the principal efforts of a pragraer are spent. The
implementation of the engine could take many forms. It cdadlch BPEL, Jess, JADE,
or a BDI implementation such as Jason, for example. Theldeta irrelevant as long
as it is consistent with reasoning about commitments.

From the programming perspective, the engine is codedinstef themeaning of
a message, not the message itself. In other words, the ARthéh@rogrammer uses to
interface with the middleware is in terms of commitment gpens and other patterns
built on top of the commitment operations. When the meanorgerns the sending of
the message, the meaning may be thought of as an instrugti®ih from the agent's
engine to the middleware. The middleware then sends theppate messages. Anal-
ogously, for an incoming message, the engine registerdtzacilwith the middleware
that returns when the commitment operation correspondirthe¢ message has been
executed. Thus, the programmer’s APl is a business-levs|@ame of the goals we set
out to achieve.

3.2 Middleware

To relate meanings to messages, the middleware takes oagpensibility for repre-
senting and reasoning about commitments. The middlewarsisis of a commitment

reasoner, maintains a commitment store, and is configurddasimmunication con-
straints needed for the commitment operations and thedupthitterns (described later).
The middleware computes commitments as prescribed in §ht]thus ensures that no
misalignments arise because of autonomy and distribuierther, as described above,
the middleware’s interface with the agent is instructiod aallback-based.

The commitment reasoner presents a query interface to #ra égpecifically the
agent’s engine), which can be used to inquire about commiisnia the store. The
engine can use such a information to decide on a course afna¢ior example, Al-
ice’s policy might be such that she sends payment orly BBook, Alice, $12, BNW)
holds.

The middleware maintains serial, point-to-point communication interface with
each other agent in the system through the communicatiar.lahis means that an
agent’s middleware processes messages involving ano#rdciyar agent—sent or
received—one at a time. This is necessary to ensure comsysté the commitment
store.

3.3 Communication Layer

The role of the communication layer is to provide reliablegeved, and noncreative
delivery of messages. Reliability implies that each serggage is eventually delivered;
ordered implies that any two messages sent by an agent theaneill arrive in the
order in which they were sent, and noncreative means messag@ot created by the
infrastructure. Such a communication layer can be readilyiémented by available
reliable message queuing solutions.

3.4 Programming the Middleware: Example Scenario

Going back to our purchase example, suppose EBook wishefl BNW to Alice. The
scenario may be enacted as follows.

1. EBook computes that it wants to make Alice an offer for BNMmternal grounds,
such as excess inventory or the goal of making a profit.

2. At the level of business meaning, EBook sends an offer iceAlAt the compu-
tational level, this is effected by EBook instructing itsddieware to create the
corresponding commitmel{ EBook, Alice, $12, BNW).

3. The middleware then sends Alice corresponding mesSagge(EBook, Alice,
$12, BNW).

4. The message travels along the communication infrastreieind arrives at Alice’s
endpoint of the message queue.

5. Atthe computational level, Alice’s middleware receittes message from the com-
munication layer, computes the corresponding commitreemd, triggers Alice’s
callback on the creation of that commitment to return, ireefffreturning to the
business level.

6. Alice may reason on the commitment and may decide to aticeptffer, based on
her private considerations such as goals.

Table 2. A snippet of EBook’s code

i f (preferredShopper(shopper) and inStock(book)) {
Proposition price = | ookupPrice(book);

//register handler with niddl eware for accept fromthe shopper
regi ster(created(shopper, EBook, book, price), handlerl);

/1 Send an offer to the shopper
Cr eat e(EBook, shopper, pri ce, book) ;

/1 Handl er for accept
handl er 1(Debt or shopper, Proposition book, Proposition price) {

/ / shopper accepted, so send the book
I nf or m{ EBook, shopper, book);

7. Alice responds by accepting—by instructing her middienta createC(Alice,
EBook, BNW ,$12); and so on.

Table 2 shows sample code for EBook. Although it is not pdesdwrite such code
yet (as the middleware hasn’t been implemented yet), itzaptthe spirit of program-
ming with a business-level API. In other examples, the moragex communication
constraints would also apply.

4 Abstractions Supported by the Middleware

As mentioned before, the middleware supports sending oatiifins to debtors and
creditors about detaches and discharges, respectivedynitidleware also supports
other integrity constraints critical to alignment. The diiglvare supports all commit-
ment operations, including delegation and assignmentwdrie three-party operations,
and guarantees that even in asynchronous settings, thatiopsroccur without giving
causing misalignments. Alignment is guaranteed becaesaitidleware embodies the
techniques for alignment developed in [11]. Here, we dis@wen high-level abstrac-
tions in the form of commitment patterns and additional ferofi alignment that the
middleware could practically support.

4.1 Patterns

We sketch some of the patterns here; these derive from thesenged by Sing#t al.
[5]. Below, we describe a sample set of patterns that carlyelael supported by the
middleware.

Alice EBook
Cs CB
cg.Cole— Create(ca)——|%C
e\\o@
oo
Ca

Fig. 4. Update pattern

Figure 4 shows the pattern for updating a commitment. At tlogamming level,
this corresponds to the debtor sendindpuate instruction to the middleware. At the
computational level, the debtor's middleware sends twosagss: one to cancel the
existing commitment, and another to create a new commitinets place.

Charlie Alice EBook
d_cs cg,d_cg Cs
\ESC
C alate
GOCG/ (d\CB, BOOk,'e)

(O' \‘ Cg

~N C&)

\‘I ca

Fig. 5. Escalate pattern

Figure 5 shows the pattern for escalating a delegated conenit Consider that
Alice has delegateclsz to Charlie. (In the figures, a commitment with the name préfix
is the delegated version of a commitment. Singe= C(FE Book, Alice, $12, BNW),
in Figure 5d_cg = C(Charlie, Alice,$12, BNW).) The delegatee (Charlie) may find
itself unable to fulfill the commitment. Here, the delegaterds arscal ate instruction
to the middleware. The middleware then sends a messaggingtihe delegator of the
escalation of the commitment, andancel message to the creditor.

Figure 6 shows the pattern for delegating a commitment withetaining respon-
sibility. Here, the debtor instructs the middleware to ampbsh DelegationWithoutRe-

Charlie Alice EBook
CB Cg

Fig. 6. Delegating without responsibility pattern

sponsibility. Along with theDelegate instruction to the delegatee, the middleware sends
a Cancel message to the creditor thus absolving the debtor of anyduresponsibility.
(Presumably, upon receiving ttigelegate, Charlie will sendCreate(d-cg) to Alice.)

Charlie Aice -
d_cg cg,d_cg N
. o5
\N'\thdraw(ca ,Char\\e)
Cancel(d_cg)—s .

Fig. 7. Withdraw pattern

Figure 7 shows the pattern for withdrawing a delegated camanit. The dele-
gator sends &thdraw instruction to the middleware. The middleware then sends a
Withdraw message to the delegatee. The delegatee’s middlewarereqewning this
message, sends&ncel to the creditor. The callback fékithdraw would return in the
delegatee.

Figure 8 shows the pattern for division of labor: differeatts of the commitment
are delegated to different parties. Here, the deliverypofil is delegated to Charlie
and that ofGo W is delegated to Barnie.

4.2 Other Forms of Alignment

Alignment as described in the previous sections and in [Hsisentially a creditor-
debtor relation. When a creditor-debtor misalignmentesishere is the possibility of
a violation of a commitment, and therefore, noncompliafite following additional

Charlie Alice EBook Barnie
Co Co

b
. D
C\'\ar\\e\/Co‘ el €9ate

a\ekCB G, Ba/,;
d cB De\eg fn/e)*') d_CG

Fig. 8. Division of labor pattern

forms of alignment may be supported as additional patternisé middleware. These
forms of alignment may not necessarily result in noncornmgiéeas it relates to commit-
ment violation; nonetheless, these forms are useful fontaming coherence in virtual
organization settings, and are commonly effected in practi

Debtor-debtor Alignment For example, suppose EBook delegates the commitment to
send Alice a book to another bookseller Charlie. Then, EBojht want to be notified
when Charlie discharges the commitment by sending the kmouakyice versa.

Such alignment may be formalized in terms of debtor-deligneent: two agents
who are related by a delegation relation remain aligned reiipect to the discharge of
the commitment. To effect such alignment would mean thairtitelleware would have
to be configured with the additional constraint that if a delotelegates a commitment
to another agent, then whenever one of them discharges thitment, it notifies the
other.

Considering alignment in debtor group could also be a useful notion. When two
or more agents are committed for the same thing (thus thepyrthen whenever one
discharges the commitment, it notifies the entire group.

Creditor-creditor Alignment In a similar vein, suppose Alice assigns the commitment
made to her by EBook to Bob. Alice may want to be notified whet Bends the
payment, and vice versa.

This alignment is between creditors, and it is formalized affiected analogously
to debtor-debtor alignment.

Contextual Alignment Each commitment has a social or legal context. Although we
have omitted the context from the commitment so far, eachneibmment is in general a
relation between three agents, the debtor, the creditdittencontext, and is expressed
asC(debtor, creditor, context, antecedent, consequent). The context’s role is the en-
forcement of the commitment. If EBook and Alice are opeigtim eBay, then eBay

is the context of their interaction. Applications such asgBn which the context it-
self plays an active role, typically have the requiremeat the context should also be
aligned with respect to the commitment.

Contextual alignment involves three parties; strongergniges, such as causal de-
livery [18] may be required from the communication layer.

5 Discussion: Conclusions and Future Work

In this paper, we have presented a multiagent system actinigéebased on interaction
and commitments. CSOA as an architectural style was firgigeed in [5]; the cur-
rent paper elaborates on that theme by taking into accoemnegults on commitment
alignment [11]. In particular, we have discussed a middtewhat can compute com-
mitments and guarantee alignment between agents even iplethy asynchronous
settings. Notably, the middleware provides high-levelgpamnming abstractions that
build on commitment operations. We have also sketchechaitiee kinds of alignments
that the middleware could practically support, thus furedkeviating the programmer’s
burden.

Our architecture is unique in that commitments form theqpal interconnections
between agents. We deemphasize the implementation of #ém’'signgine. Agent pro-
gramming languages, for example 2APL [19], remain largedgdal on BDI and do
not support commitments. As mentioned before, such laregiegn be used to create
an agent’s engine. Enhancing agent programming framevgoidtsas JADE with high-
level abstractions, for example, as illustrated in [20hasdoubt useful. However, when
one talks of multiagent systems, that invariably involvesiiaction and commitments.
Therefore, a programming language or a framework for nygtie systems should ide-
ally support reasoning about commitments, and have comenitirelated abstractions.
Even when interactions protocols are supported in ageati®d methodologies and
platforms, itis at the level of specific choreographies, aoidbf meaning (for example,
[21-24]). Tropos [25] uses the notion of goals to abstraayafiom agent reasoning
and specific plans; however, when it comes to architectytifications, Tropos re-
sorts to data and control dependencies. Das#aali. [26] show how to model a rich
family of coordination connectors for multiagent systefosmalized as data and con-
trol flow abstractions. They do not consider the meaning afsages and thus lack the
business-level semantics that distinguishes our workikéfhsupports commitments
in SAAPL by providing mappings from commitments to BDI-&tydlans, but the com-
mitment reasoning supported is fairly limited [4]. Fornaral. [27] base the semantics
of communicative acts in terms of commitments. Howeverpgerational semantics of
commitments themselves do not consider asynchronousg®tis a consequence, an
architecture based on the communicative acts would regtrioeg assumptions such
as synchrony.

In general, the treatment of communication at a low levekmmis of data and con-
trol flow is complementary to our work. We can explain this énms of correctness
properties [17]. At a business level, commitment alignnigtiie correctness property
as pertains to interoperability; at the level of data andmninteroperability is often
characterized in terms of liveness and safety. On the ond, lzgy@ents may be aligned
(with respect to their commitments) but deadlocked, eadkingafor the other to take
the next step. On the other hand, agents may be deadlocktfteeisaligned.

The main priority for our research is the implementationtté proposed archi-

tecture. The language used here to give meanings to comatiamis is sufficiently
expressive for our purposes. We are investigating more gallanguages, however,
for more subtle situations.

Acknowledgments.This research was partially supported by the Integrated EB6
project SERENITY contract 27587.

References

1

2.

12.

13.

14.

15.

16.

17.

18.

. Shaw, M., Garlan, D.: Software Architecture: Perspestion an Emerging Discipline.

Prentice-Hall, Upper Saddle River, NJ (1996)

Yolum, P., Singh, M.P.: Flexible protocol specificatiomdaxecution: Applying event calcu-

lus planning using commitments. In: Proceedings of theritstrhational Joint Conference

on Autonomous Agents and MultiAgent Systems, ACM Presy(002) 527-534

. Desai, N., Mallya, A.U., Chopra, A.K., Singh, M.P.: Iraetion protocols as design abstrac-
tions for business processes. IEEE Transactions on Seftarzgineering1(12) (December
2005) 1015-1027

. Winikoff, M.: Implementing commitment-based interacts. In: Proceedings of the 6th
International Joint Conference on Autonomous Agents antlidyent Systems. (2007) 1-8

. Singh, M.P., Chopra, A.K., Desai, N.: Commitment-bas@ASIEEE Computer2 (2009)
Accepted; available from http://www.csc.ncsu.edu/fadaipsingh/papers/.

. Hohpe, G., Woolf, B.: Enterprise Integration Patterngsining, Building, and Deploying
Messaging Solutions. Addison-Wesley Longman Publishing Dc. (2003)

. RosettaNet: Home page (1998) www.rosettanet.org.

. http://Iwww.gs1.org/productssolutions/gdsn/: GDSN

. AMQP: Advanced message queuing protocol (2007) httpamhamagp.org.

. Chopra, A.K., Singh, M.P.: Constitutive interoper#yilln: Proceedings of the 7th Interna-
tional Conference on Autonomous Agents and Multiagente3gst (2008) 797-804

. Chopra, A.K., Singh, M.P.: Multiagent commitment aliggnt. In: Proceedings of the 8th

International Joint Conference on Autonomous Agents antliMgent Systems (AAMAS),

Columbia, SC, IFAAMAS (May 2009) 937—-944

Singh, M.P.: An ontology for commitments in multiagepstems: Toward a unification of

normative concepts. Artificial Intelligence and L&w1999) 97-113

Fournet, C., Hoare, C.A.R., Rajamani, S.K., Rehof, tlicisfree conformance. In: Proceed-

ings of the 16th International Conference on Computer Aidedfication (CAV). Volume

3114 of LNCS., Springer (2004) 242-254

Bravetti, M., Zavattaro, G.: A theory for strong servimampliance. In: Proceedings of

9th International Conference on Coordination Models andguages (Coordination’07).

Number 4467 in LNCS (2007) 96-112

Baldoni, M., Baroglio, C., Chopra, A.K., Desai, N., Ratt, Singh, M.P.: Choice, interoper-

ability, and conformance in interaction protocols and merehoreographies. In: Proceedings

of the 9th International Conference on Autonomous AgentsMultiagent Systems. (2009)

Singh, M.P.: Semantical considerations on dialectoal practical commitments. In: Pro-

ceedings of the 23rd Conference on Artificial Intelligen@008) 176-181

Singh, M.P., Chopra, A.K.: Correctness properties faltiagent systems. In: Proceedings

of the Sixth Workshop on Declarative Agent Languages antifi@ogies. (2009) To appear.

Schiper, A., Birman, K., Stephenson, P.: Lightweighiszd and atomic group multicast.

ACM Transactions on Computer Syste8¢8) (1991) 272-314

19.

20.

21.

22.

23.

24.

25.

26.

27.

Dastani, M.: 2APL: A practical agent programming larggia Autonomous Agents and
Multi-Agent Systemd 6(3) (2008) 214-248

Baldoni, M., Boella, G., Genovese, V., Grenna, R., vanTaere, L.. How to program
organizations and roles in the jade framework. In: Multidgg®ystem Technologies. Volume
5244 of LNCS., Springer (2008) 25-36

Zambonelli, F., Jennings, N.R., Wooldridge, M.: Depéhg multiagent systems: The Gaia
methodology. ACM Transactions on Software Engineeringhddology12(3) (2003) 317—
370

Padgham, L., Winikoff, M.: Prometheus: A practical agemented methodology. In
Henderson-Sellers, B., Giorgini, P., eds.: Agent-Oridn¢iethodologies. Idea Group, Her-
shey, PA (2005) 107-135

Garcia-Ojeda, J.C., DeLoach, S.A., Robby, Oyenan, Wilenzuela, J.: O-MaSE: A cus-
tomizable approach to developing multiagent processedroceedings of the 8th Interna-
tional Workshop on Agent Oriented Software Engineering #2007). (2007)

Alberti, M., Chesani, F., Gavanelli, M., Lamma, E., MelP., Torroni, P.: Verifiable agent
interaction in abductive logic programming: the SCIFF feavork. ACM Transactions on
Computational Logi®(4) (2008)

Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, Fylopoulos, J.: Tropos: An agent-
oriented software development methodology. Autonomousdgyand Multi-Agent Systems
8(3) (2004) 203-236

Dastani, M., Arbab, F., de Boer, F.S.: Coordination amchmosition in multi-agent sys-
tems. In: Proceedings of the 4rd International Joint Canfee on Autonomous Agents and
Multiagent Systems (AAMAS), ACM (2005) 439-446

Fornara, N., Vigano, F., Colombetti, M.: Agent comnaation and artificial institutions.
Autonomous Agents and Multi-Agent Systefh¥?2) (2007) 121-142

