
Elements of a Business-Level Architecture for
Multiagent Systems

Amit K. Chopra1 and Munindar P. Singh2

1 Università degli Studi di Trentoakchopra.mail@gmail.com
2 North Carolina State Universitysingh@ncsu.edu

Abstract. Existing architectures for multiagent systems emphasize low-level
messaging-related considerations. As a result, the programming abstractions they
provide are also low level. In recent years, commitments have been applied to sup-
port flexible interactions among autonomous agents. We present a layered mul-
tiagent system architecture based on commitments. In this architecture, agents
are the components, and the interconnections between the agents are specified in
terms of commitments, thus abstracting away from low level details. A crucial
layer in this architecture is a commitment-based middleware that plays a vital
role in ensuring interoperation and provides commitment-related abstractions to
the application programmer. Interoperation itself is defined in terms of commit-
ment alignment. This paper details various aspects of this architecture, and shows
how a programmer would write applications to such an architecture.

1 Introduction

An architecture is an abstract description of a system. The fundamental ideaof an ar-
chitecture is that it identifiescomponents and theirinterconnections [1]. An open archi-
tecture is one that emphasizes the interconnections, leaving the components unspecified
except to the extent of their interconnections. In this manner, an open architecture yields
systems whose components can be readily substituted by other components.

When we understand multiagent systems from the standpoint of architecture, it is
clear that the components areagents (or, rather, abstractlyroles). Traditionally, the inter-
connections have been modeled in operational terms derivedfrom an understanding of
distributed systems. Consequently, the multiagent systems that result are over-specified
and behave in an inflexible manner. With such systems, it is difficult to accommodate
a richer variety of situations. What is required is the specification of interconnection in
terms of higher-level abstractions.

For concreteness, we consider cross-organizational business processes as an ap-
plication of multiagent systems that provide the happy mix of significance and com-
plexity to demonstrate the payoff of using the proposed approach. The last few years
have developed compelling accounts of the fundamental autonomy and heterogeneity
of business partners, and the concomitant need to model these partners’ interest. The
related studies of interaction protocols hint at how we might engineer multiagent sys-
tems in such settings [2–4]. A feature of these approaches istheir basis in commitments.
Commitments yield a business-level notion of compliance: as long as agents discharge
their commitments, they are free to interact as they please.However, the relationship of

protocols with architectures has not yet been adequately worked out. This requires an
understanding of interoperability in terms of commitments.

We make a fresh start on multiagent systems via an architecture. Once we realize
that we would only consider the components as agents understood flexibly, the associ-
ated interconnections must inevitably be the business relationships between the agents.
One can imagine that some notional business value flows across such relationships,
just as data flows over the traditional connectors of distributed computing. Thinking of
the business relationships as interconnections yields an architecture for what we term
service engagements [5].

The above architecture is conceptual in nature. Two naturalquestions arise: what
programming abstractions does the architecture support, and how may we operational-
ize it over existing infrastructure that is no different from that underlying traditional
approaches. Answering the above questions is the main contribution of this paper.

1.1 Middleware: Programming Abstractions

From a top-down perspective, an important layer of any architecture is middleware.
Middleware supports programming abstractions for the architecture in a way that en-
sures interoperability between components in the architecture. A relatively simple mid-
dleware is one that provides reliable message queuing services, freeing the program-
mer from the burden of, for example, implementing persistent storage and checking for
acknowledgments. These days, reliable message queuing is just one of many abstrac-
tions supported in enterprise middleware. In cross-organizational business processes,
the common middleware is centered on the abstractions of messaging. The resulting
architectural style is termed theEnterprise Service Bus (ESB). ESBs emphasize mes-
saging abstractions and patterns—for example, Apache Camel supports the enterprise
integration patterns in [6]. Further, ESBs support an event-driven architecture so as to
promote loose coupling between business applications. ESBs provide various kinds of
translation services, routing, and security, among other things, thus saving the applica-
tion programmer a good deal of repetitive effort. Some ESB implementations, such as
provided by Oracle, also support business protocols such asRosettaNet [7].

Ideally, middleware should offer abstractions that followclosely the vocabulary of
the domain. ESBs purport to support business applications;however, they lack business-
level abstractions. The abstractions they support, e.g., for RosettaNet, involve message
occurrence and ordering but without regard to the meanings of the messages. Thus
RosettaNet can be thought of as a protocol grammar. Other protocols, e.g., Global Data
Synchronization Network (GDSN) [8], would correspond to alternative grammars. Each
grammar is arbitrary and its correctness or otherwise is notup for consideration.

Figure 1 shows the conceptual arrangement of a service-oriented architecture based
on such ESBs. Programmers design businessprocesses (for example, in BPEL) based
on a public interface specification (for example, in WS-CDL or based on a protocol
such as RosettaNet). Messaging-based middleware, such as described above, hides the
details of the infrastructure from process programmers.

Fig. 1.Current enterprise middleware, conceptually

1.2 Overview of Approach

We assume a conventional infrastructure based on messaging, such as is already made
available by middleware such as the Java Messaging Service and specified in the emerg-
ing standard known as the Advanced Message Queuing Protocol(AMQP) [9]. This
infrastructure supports point-to-point messaging over channels that preserve pairwise
message order and guarantee eventual delivery. It is important to emphasize that such
infrastructure is commonly available in existing implementations.

Fig. 2. Commitment middleware, conceptually

The essential idea underlying our approach is that we can thus view system archi-
tecture at two levels of abstraction: business and infrastructure. The business level deals
with meaning whereas the infrastructure provides the operationalization. Accordingly,
we view the function of middleware as bridging this conceptual gap. Figure 2 shows that
our middleware lies in the middle between meaning and messaging. In our approach,
business meaning is expressed in terms of commitments. Commitments arise in virtu-
ally all cross-organizational business applications. Thus, reasoning about commitments
would be applicable to all of them. Commitments underlie twocorrectness criteria:
compliance andalignment. Agents are compliant as long as they discharge their com-
mitments; such a notion of compliance naturally takes into account agents’ autonomy.
Agents are aligned as long they agree on whatever commitments as may result from
their communications. Alignment is, in fact, a key form of business interoperability
[10, 11].

The proposed middleware provides commitment-based abstractions. The middle-
ware supports not only the basic commitment operations [12], but also high-level pat-
terns that build on the commitment operations. The middleware ensures that if applica-
tions are determined interoperable at the level of businessmeaning, then infrastructure-
level concerns such as asynchrony do not break the interoperability.

1.3 Contributions

The contribution of this paper lies in making explicit the architecture that commitment
alignment, as a notion of business-level interoperability, supports. This includes the
specification of agent interfaces and the question of their compatibility, the design of
the middleware that bridges between the business level and the infrastructural level,
and the programming abstractions that are made available toapplication programmers.
In all of these elements, the architecture presented is significantly different from cur-
rent multiagent architectures. We also outline how the middleware may be extended
with common business patterns and additional kinds of alignment. To illustrate how
the architecture supports a new way of programming, consider that traditional agent
communication is treated simply in terms of sending and receiving messages. However,
with our proposed architecture, it would be possible to encode communication in terms
of commitment operations and patterns. The benefit accrued is of a nature similar to that
accrued by being able to write agents (their internal reasoning, in particular) in terms of
BDI abstractions rather than low-level procedural abstractions.

The rest of this paper is organized as follows. Section 2 describes commitments
formally, what alignment means, and why misalignments occur. Some misalignments
can be detected at the level of business meanings by a static analysis of the interfaces,
whereas others that occur due to the nature of distributed systems must be prevented
by careful design of the middleware. Section 3 describes an architecture based on com-
mitments. It describes the components and the interconnections and the layers in the
architecture. Section 4 describes a sample set of useful patterns that the middleware
supports. Section 5 discusses the relevant literature.

2 Commitment Alignment

Interoperability among participants means that each participant fulfills the expectations
made by the others. To understand an architecture, it is important to understand what
interoperability in the architecture means. In our approach, an agent represents each
participant, and the expectations of an agent take the form of commitments. Existing
work on service interoperability treats expectations solely at the level of messages [13–
15].

Let us explain how commitments yield expectations. A commitment is of the form
C(debtor , creditor , antecedent , consequent), wheredebtor andcreditor are agents,
andantecedent andconsequent are propositions. This means that the debtor commits
(to the creditor) to bringing about the consequent if the antecedent holds. For example,
C(EBook ,Alice, $12,BNW) means that EBook commits to Alice that if she pays $12,
then EBook will send her the bookBrave New World. Agents interact by sending each

other messages. The messages have meanings in terms of how they affect the agents’
commitments toward each other. For example, an offer message from EBook to Alice
may bring about the aforementioned commitment.

Now imagine that at some point in their interaction, Alice infers that EBook is com-
mitted to sending her the book she paid for, but EBook infers no such commitment.
Their interaction would break down at the level of business meaning. In other words,
Alice and EBook would not be interoperable. In general, a keyrequirement for inter-
operability is that the interacting agents remain aligned with respect to their commit-
ments. Commitment alignment is a key form of business-levelinteroperability. Agents
are aligned if whenever one agent (as creditor) infers a commitment from a second
agent, the second agent (as debtor) also infers that commitment. If we can guaranteea
priori that agents never—at no point during any possible interaction—get misaligned,
only then the agents are interoperable.

In general, agents may get misaligned because of theirheterogeneity, autonomy,
anddistribution.

HeterogeneityAgents may assign incompatible meanings to the messages they are
exchanging. To be able to successfully interact, the agentsmust agree on what their
communications count as. Heterogeneity is the cause of misalignment in Exam-
ple 1.

Example 1. For Alice, anOffer message from EBook counts as a commitment
from EBook to ship a book in return for payment. Whereas for EBook, Offer
does not count as any such commitment; but an explicitAccept from Alice does.
Thus, when EBook sends Alice anOffer message, Alice infers the commitment,
but EBook does not—a misalignment.

Heterogeneity is addressed by statically analyzing if the interfaces of agents are
compatible [10].

Autonomy Agent autonomy must be accommodated; however, accommodating au-
tonomy is nontrivial. The reason is that autonomy operationally means that they
are free to send messages. In turn, this means that communication between agents
is asynchronous. Thus, in general, agents may observe messages in different orders.
Since messages are understood in terms of their effects on commitments, the agents
involved may become misaligned. This is the cause of misalignment in Example 2.

Example 2. EBook sends anOffer to Alice, where the offer means a commitment
that if Alice pays, then EBook will send the book. Alice sendsthe payment (mes-
sage) for the book. Concurrently, EBook cancels the offer bysendingCancelOffer.
Alice observes EBook’s cancellation after sending the payment; so she regards it as
spurious. EBook observes Alice’s payment after sending itscancellation, so EBook
considers the payment late. As a result, Alice infers that EBook is committed to
sending her the book, but EBook does not infer that commitment. Thus, EBook
and Alice are misaligned.

An ideal approach to addressing the challenge of autonomy should work without
curbing autonomy. In contrast, existing approaches to reasoning about commit-
ments in distributed systems typically rely on some kind of synchronization proto-
col; synchronization, however, inhibits autonomy. Chopraand Singh [11] formalize
the inferences made upon observing commitment-related messages in such a way
that, in spite of autonomy, agents remain aligned.

Distribution In a distributed system, some agents may have more information about
relevant events than others. This is the cause of misalignment in Example 3.

Example 3. Alice commits to Bob that if the sky is clear at 5PM, then she will meet
him at the lake. At 5PM, Bob observes (a message from the environment) that the
sky is clear, and therefore infers that Alice is unconditionally committed to meeting
him at the lake. However, Alice does not know that the sky is clear, and therefore
does not infer the unconditional commitment. Bob and Alice are thus misaligned.

Chopra and Singh [11] stateintegrity constraints, which are constraints upon agent
behavior necessary to handle distribution. The constraints are of two kinds: (1) a
debtor must inform the creditor about the discharge of a commitment, and (2) a
creditor must inform the debtor about the detach of a commitment. One should not
consider alignment until such information has been propagated.

2.1 Characterizing Alignment

A set of agents is aligned if in all executions, atappropriate points during their exe-
cution, if a creditor infers a commitment from its observations, the debtor also infers
the commitment from its own observations [11]. An “appropriate” point in the execu-
tion of a multiagent system is given by consistent observations of the various agents
where two additional properties hold. One, alignment may only be considered at those
points where no message is in transit. Such points are termedquiescent. Two, alignment
may only be considered at those points that areintegral with respect to the stated infor-
mation propagation constraints. The motivation behind theabove properties is simply
that it would surprise no one if two agents failed to infer matching commitments when
they had made differing observations: either because some message was in transit that
only its sender knew about or because some message was not sent, and some agent had
withheld material facts from another.

2.2 Background on Commitments

A commitment is of the formC(x, y, r, u) wherex andy are agents, andr andu are
propositions. Ifr holds, thenC(x, y, r, u) is detached, and the commitmentC(x, y,⊤, u)
holds. Ifu holds, then the commitment isdischarged and doesn’t hold any longer. All
commitments areconditional; an unconditional commitment is merely a special case
where the antecedent equals⊤. Singh [16] presents key reasoning postulates for com-
mitments.

The commitment operations are reproduced below (from [12]). CREATE, CANCEL,
andRELEASEare two-party operations, whereasDELEGATEandASSIGNare three-party
operations.

– CREATE(x, y, r, u) is performed byx, and it causesC(x, y, r, u) to hold.
– CANCEL(x, y, r, u) is performed byx, and it causesC(x, y, r, u) to not hold.
– RELEASE(x, y, r, u) is performed byy, and it causesC(x, y, r, u) to not hold.
– DELEGATE(x, y, z, r, u) is performed byx, and it causesC(z, y, r, u) to hold.
– ASSIGN(x, y, z, r, u) is performed byy, and it causesC(x, z, r, u) to hold.

Let us define the set of messages that correspond to the basic commitment opera-
tions. LetΦ be a set of atomic propositions. In the commitment operations,r andu are
formulas overΦ using∧ and∨. Create(x, y, r, u) andCancel (x, y, r, u) are messages
from x to y; Release(x, y, r, u) from y to x; Delegate(x, y, z, r, u) from x to z; and
Assign(x, y, z, r, u) from y to x. Supposec = C(x, y, r, u). ThenCreate(c) stands for
Create(x, y, r, u). We similarly defineDelegate(c, z), Assign(c, z), Release(c), and
Cancel(c). Inform(x, y, p) is a message fromx to y, wherep is conjunction overΦ.
Observing anInform(p) causesp to hold, which may lead to the discharge or detach
of a commitment.

Below, letcB = C(EBook, Alice, $12,BNW); cG = C(EBook, Alice, $12,GoW);
c0 = C(EBook, Alice, $12,BNW ∧ GoW). (BNW stands for the bookBrave New
World; GoW stands for the bookGrapes of Wrath).

3 Multiagent System Architecture

Fig. 3. Understanding Commitment-Based Architecture

Figure 3 shows our proposal for a multiagent system architecture. At the level of
business meaning, the components are the agents in the system representing the in-
teracting business partners. As pertains to programming using our architecture, at the

top, we have agents and at the bottom the communication layer; the middleware sits in
between. This layered architecture is characterized by three kinds of interfaces.

– At the business level, the interface is between agents and isexpressed via meanings.
The business analyst and the software developer who programs using commitments
would think at this level (of business relationships), and would be unaware of any
lower layer.

– At the implementation level, the interface is between our middleware and the com-
munication infrastructure and is based on traditional messaging services. In a tra-
ditional distributed system, a software developer would need to think at this level.
In our approach, only the implementor of our middleware thinks at this level.

– Between the agent and the middleware, the interface is largely in terms of instruc-
tions from the agent to the middleware: when an agent tells the middleware to apply
a commitment operation or one of the additional patterns based on commitments
such asEscalate (patterns described later).

Two nice features of our approach are that (1) the instructions use the same vocabulary
as the business meanings and (2) we specify middleware that guarantees alignment as
long as the instructions are limited to the commitment operations or patterns. Below, we
describe each components (agents), interconnections (interfaces), and layers in detail.

3.1 Agents

Agents represent business partners. They provide and consume real-world services by
participating in service engagements. The principal elements of interest in an agent are
its interface and its reasoning engine.

Interface An agent’s interface describes the messages it expects to exchange with other
agents, along with the business meanings of such messages. Table 1 shows Alice’s in-
terface specification. The left column is the actual protocol whereas the right column
shows a traditional understanding of those messages. For example,Create(EBook ,Alice,

$12,BNW) message from EBook to Alice corresponds to an offer from EBook.

Table 1.An example interface for Alice

Commitment Protocol Message Traditional Message
Create(EBook ,Alice, $12, BNW) Offer(EBook ,Alice, $12, BNW)
Create(Alice, EBook ,BNW , $12) Accept(Alice,EBook ,BNW , $12)
Release(EBook ,Alice, $12, BNW) Reject(Alice,EBook , $12, BNW)
Inform(EBook ,Alice, BNW) Deliver(EBook ,Alice,BNW)
Inform(Alice,EBook , $12) Pay(Alice,EBook , $12)

The interface shown in Table 1 is admittedly quite simple in that it does not talk
about the penalties for the violation or cancellation of a commitment. Penalties would
be encoded as additional commitments in the interface.

Notice that the interface does not contain some of the procedural constructs com-
monly found in interface description languages or protocols, such as sequence, choice,
and so on. For example, it does not say, that upon observing anoffer Alice has achoice
between accepting or rejecting the offer—there is simply noneed to say so. A re-
jection sent after Alice accepts the offer and EBook sends the book should have no
effect—Alice should remain committed to pay. The formalization of commitments in
[11] captures such intuitions, and makes the statement of procedural constructs in inter-
faces largely unnecessary. A second reason such constructsare introduced is to simply
make the interaction synchronous. However, such constructs are rendered superfluous
by the approach for reasoning about commitments in asynchronous settings [11]. Fi-
nally, threading constructions such as fork and join are clearly implementation details,
and have no place in an interface. Of course, if an application demands a procedural
construct, it could be introduced. For example, Alice may not trust booksellers and her
interface might constrain delivery of books before payment. Alice will then be noninter-
operable at the messaging-level with booksellers who require payment first; however, it
would not affect alignment, that is, commitment-level interoperability [17].

As described earlier, misalignments arise when agents ascribe incompatible mean-
ings to messages. An application programmer would specify an interface and publish
it. Before interacting with other agents, the agent would presumably check for compat-
ibility with the other agents.

Engine The engine drives the agent. It represents the private policies of the agent; these
govern when an agent should pass an instruction to the middleware, how instruction
parameters should be bound, how an agent should handle returned callbacks (described
below) and so on. In fact, the engine is the place for all the procedural details. For
example, Alice’s policy may enforce a choice between acceptand reject upon receiving
an offer, or dictate that payment be sent only after receiving books.

Writing the engine is where the principal efforts of a programmer are spent. The
implementation of the engine could take many forms. It couldbe a BPEL, Jess, JADE,
or a BDI implementation such as Jason, for example. The details are irrelevant as long
as it is consistent with reasoning about commitments.

From the programming perspective, the engine is coded in terms of themeaning of
a message, not the message itself. In other words, the API that the programmer uses to
interface with the middleware is in terms of commitment operations and other patterns
built on top of the commitment operations. When the meaning concerns the sending of
the message, the meaning may be thought of as an instruction (API) from the agent’s
engine to the middleware. The middleware then sends the appropriate messages. Anal-
ogously, for an incoming message, the engine registers a callback with the middleware
that returns when the commitment operation corresponding to the message has been
executed. Thus, the programmer’s API is a business-level one, one of the goals we set
out to achieve.

3.2 Middleware

To relate meanings to messages, the middleware takes on the responsibility for repre-
senting and reasoning about commitments. The middleware consists of a commitment

reasoner, maintains a commitment store, and is configured with communication con-
straints needed for the commitment operations and the further patterns (described later).
The middleware computes commitments as prescribed in [11],and thus ensures that no
misalignments arise because of autonomy and distribution.Further, as described above,
the middleware’s interface with the agent is instruction and callback-based.

The commitment reasoner presents a query interface to the agent (specifically the
agent’s engine), which can be used to inquire about commitments in the store. The
engine can use such a information to decide on a course of action. For example, Al-
ice’s policy might be such that she sends payment only ifC(EBook ,Alice, $12 ,BNW)
holds.

The middleware maintains aserial, point-to-point communication interface with
each other agent in the system through the communication layer. This means that an
agent’s middleware processes messages involving another particular agent—sent or
received—one at a time. This is necessary to ensure consistency of the commitment
store.

3.3 Communication Layer

The role of the communication layer is to provide reliable, ordered, and noncreative
delivery of messages. Reliability implies that each sent message is eventually delivered;
ordered implies that any two messages sent by an agent to another will arrive in the
order in which they were sent, and noncreative means messages are not created by the
infrastructure. Such a communication layer can be readily implemented by available
reliable message queuing solutions.

3.4 Programming the Middleware: Example Scenario

Going back to our purchase example, suppose EBook wishes to sell BNW to Alice. The
scenario may be enacted as follows.

1. EBook computes that it wants to make Alice an offer for BNW on internal grounds,
such as excess inventory or the goal of making a profit.

2. At the level of business meaning, EBook sends an offer to Alice. At the compu-
tational level, this is effected by EBook instructing its middleware to create the
corresponding commitmentC(EBook ,Alice, $12,BNW).

3. The middleware then sends Alice corresponding messageCreate(EBook ,Alice,

$12,BNW).
4. The message travels along the communication infrastructure and arrives at Alice’s

endpoint of the message queue.
5. At the computational level, Alice’s middleware receivesthe message from the com-

munication layer, computes the corresponding commitment,and triggers Alice’s
callback on the creation of that commitment to return, in effect returning to the
business level.

6. Alice may reason on the commitment and may decide to acceptthe offer, based on
her private considerations such as goals.

Table 2.A snippet of EBook’s code

if (preferredShopper(shopper) and inStock(book)) {

Proposition price = lookupPrice(book);

//register handler with middleware for accept from the shopper
register(created(shopper, EBook, book, price), handler1);

//Send an offer to the shopper
Create(EBook,shopper,price,book);

}
...

//Handler for accept
handler1(Debtor shopper, Proposition book, Proposition price) {

//shopper accepted, so send the book
Inform(EBook, shopper, book);

}

7. Alice responds by accepting—by instructing her middleware to createC(Alice,

EBook ,BNW , $12); and so on.

Table 2 shows sample code for EBook. Although it is not possible to write such code
yet (as the middleware hasn’t been implemented yet), it captures the spirit of program-
ming with a business-level API. In other examples, the more complex communication
constraints would also apply.

4 Abstractions Supported by the Middleware

As mentioned before, the middleware supports sending notifications to debtors and
creditors about detaches and discharges, respectively. The middleware also supports
other integrity constraints critical to alignment. The middleware supports all commit-
ment operations, including delegation and assignment, which are three-party operations,
and guarantees that even in asynchronous settings, the operations occur without giving
causing misalignments. Alignment is guaranteed because the middleware embodies the
techniques for alignment developed in [11]. Here, we discuss even high-level abstrac-
tions in the form of commitment patterns and additional forms of alignment that the
middleware could practically support.

4.1 Patterns

We sketch some of the patterns here; these derive from those presented by Singhet al.
[5]. Below, we describe a sample set of patterns that can readily be supported by the
middleware.

Fig. 4.Update pattern

Figure 4 shows the pattern for updating a commitment. At the programming level,
this corresponds to the debtor sending anUpdate instruction to the middleware. At the
computational level, the debtor’s middleware sends two messages: one to cancel the
existing commitment, and another to create a new commitmentin its place.

Fig. 5. Escalate pattern

Figure 5 shows the pattern for escalating a delegated commitment. Consider that
Alice has delegatedcB to Charlie. (In the figures, a commitment with the name prefixd

is the delegated version of a commitment. SincecB = C(EBook, Alice, $12,BNW),
in Figure 5,d cB = C(Charlie, Alice, $12,BNW).) The delegatee (Charlie) may find
itself unable to fulfill the commitment. Here, the delegateesends anEscalate instruction
to the middleware. The middleware then sends a message notifying the delegator of the
escalation of the commitment, and aCancel message to the creditor.

Figure 6 shows the pattern for delegating a commitment without retaining respon-
sibility. Here, the debtor instructs the middleware to accomplishDelegationWithoutRe-

Fig. 6. Delegating without responsibility pattern

sponsibility. Along with theDelegate instruction to the delegatee, the middleware sends
aCancel message to the creditor thus absolving the debtor of any further responsibility.
(Presumably, upon receiving theDelegate, Charlie will sendCreate(d cB) to Alice.)

Fig. 7. Withdraw pattern

Figure 7 shows the pattern for withdrawing a delegated commitment. The dele-
gator sends aWithdraw instruction to the middleware. The middleware then sends a
Withdraw message to the delegatee. The delegatee’s middleware, uponreceiving this
message, sends aCancel to the creditor. The callback forWithdraw would return in the
delegatee.

Figure 8 shows the pattern for division of labor: different parts of the commitment
are delegated to different parties. Here, the delivery ofBNW is delegated to Charlie
and that ofGoW is delegated to Barnie.

4.2 Other Forms of Alignment

Alignment as described in the previous sections and in [11] is essentially a creditor-
debtor relation. When a creditor-debtor misalignment arises, there is the possibility of
a violation of a commitment, and therefore, noncompliance.The following additional

Fig. 8. Division of labor pattern

forms of alignment may be supported as additional patterns in the middleware. These
forms of alignment may not necessarily result in noncompliance as it relates to commit-
ment violation; nonetheless, these forms are useful for maintaining coherence in virtual
organization settings, and are commonly effected in practice.

Debtor-debtor Alignment For example, suppose EBook delegates the commitment to
send Alice a book to another bookseller Charlie. Then, EBookmight want to be notified
when Charlie discharges the commitment by sending the book,and vice versa.

Such alignment may be formalized in terms of debtor-debtor alignment: two agents
who are related by a delegation relation remain aligned withrespect to the discharge of
the commitment. To effect such alignment would mean that themiddleware would have
to be configured with the additional constraint that if a debtor delegates a commitment
to another agent, then whenever one of them discharges the commitment, it notifies the
other.

Considering alignment in adebtor group could also be a useful notion. When two
or more agents are committed for the same thing (thus the group), then whenever one
discharges the commitment, it notifies the entire group.

Creditor-creditor Alignment In a similar vein, suppose Alice assigns the commitment
made to her by EBook to Bob. Alice may want to be notified when Bob sends the
payment, and vice versa.

This alignment is between creditors, and it is formalized and effected analogously
to debtor-debtor alignment.

Contextual Alignment Each commitment has a social or legal context. Although we
have omitted the context from the commitment so far, each commitment is in general a
relation between three agents, the debtor, the creditor, and the context, and is expressed
asC(debtor , creditor , context, antecedent , consequent). The context’s role is the en-
forcement of the commitment. If EBook and Alice are operating on eBay, then eBay
is the context of their interaction. Applications such as eBay, in which the context it-
self plays an active role, typically have the requirement that the context should also be
aligned with respect to the commitment.

Contextual alignment involves three parties; stronger guarantees, such as causal de-
livery [18] may be required from the communication layer.

5 Discussion: Conclusions and Future Work

In this paper, we have presented a multiagent system architecture based on interaction
and commitments. CSOA as an architectural style was first proposed in [5]; the cur-
rent paper elaborates on that theme by taking into account the results on commitment
alignment [11]. In particular, we have discussed a middleware that can compute com-
mitments and guarantee alignment between agents even in completely asynchronous
settings. Notably, the middleware provides high-level programming abstractions that
build on commitment operations. We have also sketched alternative kinds of alignments
that the middleware could practically support, thus further alleviating the programmer’s
burden.

Our architecture is unique in that commitments form the principal interconnections
between agents. We deemphasize the implementation of the agent’s engine. Agent pro-
gramming languages, for example 2APL [19], remain largely based on BDI and do
not support commitments. As mentioned before, such languages can be used to create
an agent’s engine. Enhancing agent programming frameworkssuch as JADE with high-
level abstractions, for example, as illustrated in [20], isno doubt useful. However, when
one talks of multiagent systems, that invariably involves interaction and commitments.
Therefore, a programming language or a framework for multiagent systems should ide-
ally support reasoning about commitments, and have commitment-related abstractions.
Even when interactions protocols are supported in agent-oriented methodologies and
platforms, it is at the level of specific choreographies, andnot of meaning (for example,
[21–24]). Tropos [25] uses the notion of goals to abstract away from agent reasoning
and specific plans; however, when it comes to architectural specifications, Tropos re-
sorts to data and control dependencies. Dastaniet al. [26] show how to model a rich
family of coordination connectors for multiagent systems,formalized as data and con-
trol flow abstractions. They do not consider the meaning of messages and thus lack the
business-level semantics that distinguishes our work. Winikoff supports commitments
in SAAPL by providing mappings from commitments to BDI-style plans, but the com-
mitment reasoning supported is fairly limited [4]. Fornaraet al. [27] base the semantics
of communicative acts in terms of commitments. However, theoperational semantics of
commitments themselves do not consider asynchronous settings. As a consequence, an
architecture based on the communicative acts would requirestrong assumptions such
as synchrony.

In general, the treatment of communication at a low level in terms of data and con-
trol flow is complementary to our work. We can explain this in terms of correctness
properties [17]. At a business level, commitment alignmentis the correctness property
as pertains to interoperability; at the level of data and control, interoperability is often
characterized in terms of liveness and safety. On the one hand, agents may be aligned
(with respect to their commitments) but deadlocked, each waiting for the other to take
the next step. On the other hand, agents may be deadlock-freebut misaligned.

The main priority for our research is the implementation of the proposed archi-
tecture. The language used here to give meanings to communications is sufficiently
expressive for our purposes. We are investigating more powerful languages, however,
for more subtle situations.

Acknowledgments.This research was partially supported by the Integrated FP6-EU
project SERENITY contract 27587.

References

1. Shaw, M., Garlan, D.: Software Architecture: Perspectives on an Emerging Discipline.
Prentice-Hall, Upper Saddle River, NJ (1996)

2. Yolum, P., Singh, M.P.: Flexible protocol specification and execution: Applying event calcu-
lus planning using commitments. In: Proceedings of the 1st International Joint Conference
on Autonomous Agents and MultiAgent Systems, ACM Press (July 2002) 527–534

3. Desai, N., Mallya, A.U., Chopra, A.K., Singh, M.P.: Interaction protocols as design abstrac-
tions for business processes. IEEE Transactions on Software Engineering31(12) (December
2005) 1015–1027

4. Winikoff, M.: Implementing commitment-based interactions. In: Proceedings of the 6th
International Joint Conference on Autonomous Agents and Multiagent Systems. (2007) 1–8

5. Singh, M.P., Chopra, A.K., Desai, N.: Commitment-based SOA. IEEE Computer42 (2009)
Accepted; available from http://www.csc.ncsu.edu/faculty/mpsingh/papers/.

6. Hohpe, G., Woolf, B.: Enterprise Integration Patterns: Designing, Building, and Deploying
Messaging Solutions. Addison-Wesley Longman Publishing Co., Inc. (2003)

7. RosettaNet: Home page (1998) www.rosettanet.org.
8. http://www.gs1.org/productssolutions/gdsn/: GDSN
9. AMQP: Advanced message queuing protocol (2007) http://www.amqp.org.

10. Chopra, A.K., Singh, M.P.: Constitutive interoperability. In: Proceedings of the 7th Interna-
tional Conference on Autonomous Agents and Multiagent Systems. (2008) 797–804

11. Chopra, A.K., Singh, M.P.: Multiagent commitment alignment. In: Proceedings of the 8th
International Joint Conference on Autonomous Agents and MultiAgent Systems (AAMAS),
Columbia, SC, IFAAMAS (May 2009) 937–944

12. Singh, M.P.: An ontology for commitments in multiagent systems: Toward a unification of
normative concepts. Artificial Intelligence and Law7 (1999) 97–113

13. Fournet, C., Hoare, C.A.R., Rajamani, S.K., Rehof, J.: Stuck-free conformance. In: Proceed-
ings of the 16th International Conference on Computer AidedVerification (CAV). Volume
3114 of LNCS., Springer (2004) 242–254

14. Bravetti, M., Zavattaro, G.: A theory for strong servicecompliance. In: Proceedings of
9th International Conference on Coordination Models and Languages (Coordination’07).
Number 4467 in LNCS (2007) 96–112

15. Baldoni, M., Baroglio, C., Chopra, A.K., Desai, N., Patti, V., Singh, M.P.: Choice, interoper-
ability, and conformance in interaction protocols and service choreographies. In: Proceedings
of the 9th International Conference on Autonomous Agents and Multiagent Systems. (2009)

16. Singh, M.P.: Semantical considerations on dialecticaland practical commitments. In: Pro-
ceedings of the 23rd Conference on Artificial Intelligence.(2008) 176–181

17. Singh, M.P., Chopra, A.K.: Correctness properties for multiagent systems. In: Proceedings
of the Sixth Workshop on Declarative Agent Languages and Technologies. (2009) To appear.

18. Schiper, A., Birman, K., Stephenson, P.: Lightweight causal and atomic group multicast.
ACM Transactions on Computer Systems9(3) (1991) 272–314

19. Dastani, M.: 2APL: A practical agent programming language. Autonomous Agents and
Multi-Agent Systems16(3) (2008) 214–248

20. Baldoni, M., Boella, G., Genovese, V., Grenna, R., van der Torre, L.: How to program
organizations and roles in the jade framework. In: Multiagent System Technologies. Volume
5244 of LNCS., Springer (2008) 25–36

21. Zambonelli, F., Jennings, N.R., Wooldridge, M.: Developing multiagent systems: The Gaia
methodology. ACM Transactions on Software Engineering Methodology12(3) (2003) 317–
370

22. Padgham, L., Winikoff, M.: Prometheus: A practical agent-oriented methodology. In
Henderson-Sellers, B., Giorgini, P., eds.: Agent-Oriented Methodologies. Idea Group, Her-
shey, PA (2005) 107–135

23. Garcia-Ojeda, J.C., DeLoach, S.A., Robby, Oyenan, W.H., Valenzuela, J.: O-MaSE: A cus-
tomizable approach to developing multiagent processes. In: Proceedings of the 8th Interna-
tional Workshop on Agent Oriented Software Engineering (AOSE 2007). (2007)

24. Alberti, M., Chesani, F., Gavanelli, M., Lamma, E., Mello, P., Torroni, P.: Verifiable agent
interaction in abductive logic programming: the SCIFF framework. ACM Transactions on
Computational Logic9(4) (2008)

25. Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., Mylopoulos, J.: Tropos: An agent-
oriented software development methodology. Autonomous Agents and Multi-Agent Systems
8(3) (2004) 203–236

26. Dastani, M., Arbab, F., de Boer, F.S.: Coordination and composition in multi-agent sys-
tems. In: Proceedings of the 4rd International Joint Conference on Autonomous Agents and
Multiagent Systems (AAMAS), ACM (2005) 439–446

27. Fornara, N., Viganò, F., Colombetti, M.: Agent communication and artificial institutions.
Autonomous Agents and Multi-Agent Systems14(2) (2007) 121–142

