
Analyzing Contract Robustness through a
Model of Commitments

Amit K. Chopra1, Nir Oren2, Sanjay Modgil3, Nirmit Desai4,
Simon Miles3, Michael Luck3, and Munindar P. Singh5

1 Università degli Studi di Trento
akchopra.mail@gmail.com

2 University of Aberdeen
n.oren@abdn.ac.uk
3 King’s College London

{sanjay.modgil, simon.miles, michael.luck}@kcl.ac.uk
4 IBM India Research Laboratory
nirmit123@in.ibm.com

5 North Carolina State University
singh@ncsu.edu

Abstract. We address one of the challenges in developing solutions based on
multiagent systems for the problems of cross-organizational business processes
and commerce generally. Specifically, we study how to gather and analyze re-
quirements embodied within business contracts using the abstractions of multia-
gent systems.
Commerce is driven by business contracts. Each party to a business contract must
be assured that the contract is robust, in the sense that it fulfills its goals and
avoids undesirable outcomes. However, real-life business contracts tend to be
complex and unamenable both to manual scrutiny and domain-independent sci-
entific methods, making it difficult to provide automated support for determining
or improving their robustness. As a result, establishing a contract is nontrivial and
adds significantly to the transaction costs of conducting business. If the adoption
of multiagent systems approaches in supporting business interactions is to be vi-
able, we need to develop appropriate techniques to enable such software to reason
about contracts in relation to their robustness.
To this end, we propose a powerful approach to assessing the robustness of con-
tracts, and make three main contributions. First, we demonstrate a novel formal
model for contracts that is based on commitments. Second, we define rules to
evaluate the robustness of contracts. Third, we offer a methodology for modelling
contracts to enable checking them for robustness. We validate these contributions
via a study of real-world contracts.

1 Introduction

When agent-oriented software engineering (AOSE) first emerged, it developed a rich
panoply of concepts, abstractions, and techniques based on the notion of agents and
allied notions such as roles, protocols, organizations, and commitments. These notions
address the inherently interactive nature of multiagent system and provide the key basis



both for developing software applications that involve autonomous and heterogeneous
participants and for distinguishing AOSE as a technical discipline from the rest of soft-
ware engineering. The applications that AOSE is geared to addressing include cross-
organizational business processes and commerce in general. These have clearly gained
in social importance in the last decade or so since AOSE has been practiced. The needs
that they bring up, especially of flexible modeling and enactment, and of managing
complexity continue to speak to the importance of AOSE as a discipline.

However, as both traditional software engineering and AOSE have grown, it has
become more and more important to bridge the gap between the two. In some cases,
researchers have sought to use the tools and techniques of traditional software engi-
neering to enhance AOSE, including efforts in programming tools and methodologies
and in formal methods. Examples of the former include several works such as those
surveyed by Nunes et al. [14], and examples of the latter include works by Meneguzzi
et al. [13] and Telang and Singh [19, 20]. In other cases, researchers have sought to
formalize concepts that originate in AOSE in ways that might influence traditional soft-
ware engineering. Examples of this are works by Bordini and colleagues [2, 3] and
by Weyns et al. [21]. The above works demonstrate the expanding overlaps between
agent-oriented and traditional software engineering. However, they also demonstrate an
interesting limitation in that generally the forays of AOSE into traditional practice so far
take place in the later stages of design and development: either in the formalization of
system specifications or in the development of executable or nearly executable software
artifacts, and in their verification and validation.

The present work addresses one of the least understood and hence riskiest phases of
the software engineering life cycle, namely, the determination and analysis of system
requirements in the first place. Not only is the requirements phase the riskiest, it is
also one where (for problems involving commerce, in particular) multiagent systems
concepts can apply naturally and potentially facilitate the later phases.

Another novelty of the present work is that it takes what one might understand as a
hybrid approach. It adopts the idea of commitments from AOSE as its key organizing
principle and uses it to present a generalized model of business contracts in terms of
a variety of commitments. This model sustains both (1) a methodology for identifying
various types of commitments from traditional text-based contracts and (2) an approach
for assessing the robustness of such contracts from the perspective of any of the parties
involved. In other words, the present work seeks to incorporate AOSE concepts into the
heart of traditional software engineering practice, seeking neither to replace traditional
practice with AOSE concepts and technique nor merely to place AOSE concepts in a
thin veneer on top while leaving the rest unchanged.

A business contract specifies the terms under which the contracting parties exchange
services. In this context, a contract is robust for a party if it satisfies that party’s goals
and preferences. In general, practical contracts can be quite complex, usually because
each party inserts clauses to protect its own individual interests. The question of whether
such a contract is robust is an important one that is not trivial to answer. In fact, the
robustness of a contract may be assessed in different ways. For example, whereas a
contract may specify that a particular service will be provided, it need not specify how
the specified service will be provided, leaving open the possibility that the method may



be inappropriate in the eyes of some party. Alternatively, a contract may specify ex-
actly what and how a service should be provided, but make no provision for rectifying
problems when the service fails to be delivered due to accident or malice.

Two aspects of the complexity of contracts makes ensuring robustness difficult.
First, traditional contracts are not explicitly structured according to a suitable high-
level formal model. Second, the free text form of today’s contracts complicates analyz-
ing their content in any automated way. Multiagent systems offer promising solutions
to help manage business relationships and enact business processes; however, without
first assessing the robustness of contracts, agents cannot be relied upon to agree upon
or execute contracts of real significance.

In this paper, we provide an approach to modeling contracts specifically in order to
address the problem of unambiguously analyzing their robustness. We treat a contract
as a set of interrelated commitments among those parties who have signed it. These
commitments play differing, interconnected roles in the overall contract and support a
formal analysis to determine potential threats to the robustness of the given contract.
For example, robustness is enhanced when a commitment to provide a service occurs
with a concomitant commitment to resolve problems in cases where that service could
not be delivered.

We make three contributions that together address the problems of how to analyze
contract robustness, and how to design contracts to ensure that they are robust. First,
we provide a structured model for expressing contracts. Second, we outline a method-
ology for identifying the various kinds of commitments that occur in a textual contract.
The methodology helps formalize contracts in terms of the structured model. Third, we
specify rules that can be applied to the model in order to determine the robustness of
the underlying contract. We motivate our approach using examples from a real contract;
we validate our approach against another real contract.

The rest of the paper is organized as follows. Section 2 introduces our running
example. Section 3 describes our structured, commitment-oriented model of contracts.
Section 4 outlines our methodology for expressing human-oriented contracts in our
model. Section 5 specifies rules governing robustness of contracts. Section 6 provides
an evaluation using a second case study, and Section 7 discusses related work. Finally,
Section 8 concludes with discussion of future directions for research.

2 Motivating Example

To illustrate and evaluate our approach, we consider a real-world services contract be-
tween Advanced Semiconductor Engineering (ASE) and Motorola.6 The contract is for
the assembly and testing of semiconductor chips, and the provisioning of related ser-
vices. To save space, we describe only its relevant snippets. The preamble identifies
the parties and their motivations for entering into the contract, as the following snippet
shows.

Preamble: MANUFACTURING SERVICES AGREEMENT... WHEREAS,
Motorola and ASE desire to establish a strategic supplier relationship in which

6 http://contracts.onecle.com/ase/motorola.mfg-korea.1999.07.03.shtml



ASE will utilize the capacity at its final semiconductor manufacturing oper-
ation and facilities of ASE Korea located at Paju, Korea (the “PAJU FACIL-
ITY”) on a priority basis to perform the assembly, test, and associated services
on certain semiconductor products for Motorola.

The contract includes distinct sections, each grouping clauses that impose interre-
lated demands on the contracting parties. ASE will use its facility in Korea to assemble
and test semiconductor products (the contract products) for Motorola. Motorola will
provide the requisite specifications and equipment to enable ASE to carry out its task.
Motorola will also provide monthly forecasts to aid ASE in capacity planning. Motorola
will place purchase orders with ASE for the contract products, upon which ASE will
ship the products to destinations specified by Motorola. ASE will then invoice Motorola
for payment according to the prices agreed upon in the contract. Clauses in the contract
also cover concerns such as insurance, indemnity, liability, and so on.

3 A Model for Robust Contracts

A contract is robust in fulfilling agents’ goals under varying circumstances primarily
because of the commitments made in the contractual clauses. It is from these commit-
ments that we can assess what to expect from agents executing the contract. Therefore,
the first step in our approach is to provide a basic model for contractual commitments.
We go on to describe how robustness can be defined in terms of such commitments, and
then provide an enhanced commitment model specifically designed to model contrac-
tual information relevant to analyzing robustness.

3.1 Background: Commitments

The expression C(DEBTOR, CREDITOR, CONTEXT, antecedent, consequent) means that
the debtor commits to the creditor for bringing about the consequent provided the an-
tecedent holds. In contractual terms, a commitment represents a proposed business ex-
change: the antecedent and consequent represent the considerations of the creditor and
debtor, respectively.

Importantly, a commitment arises within a context, which captures the legal, social,
or community setting in which the commitment is enforced. A subtle feature of our
approach is that here the context can correspond to either a real-life institution or orga-
nization, such as eBay or the European Union or the famous fish market of Blanes [16].
A context is an active entity and can be modeled as an agent in its own right: a con-
text in this sense imposes regulations on the participants, and it might penalize or eject
noncompliant participants. The context itself may or may not have any consideration in
the business exchange; its primary function is regulation. Often, the context plays the
role of an arbiter in disputes. Within a contractual setting, the context typically consists
of the legal framework under which the contract is signed, together with the domain
ontology and the contract document itself. In other words, given a certain legal system,
an understanding of the world, and a contract (all of which make up the context), cer-
tain commitments between the contracting parties arise and are manipulated in a natural
manner.



More specifically, a contract is a set of commitments, each of which has the same
context. As an example, an ordering process may involve two commitments: c1 =
C(SELLER, BUYER, ORG, pay, shipGoods) and c2 = C(BUYER, SELLER, ORG, buy-
Goods, pay). Here we use ORG as the context within whose scope the contract takes
place. The first commitment requires the seller to ship the goods to the buyer once pay-
ment has been made, whereas the second commits the buyer to pay for goods it has
purchased. Notice that the BUYER and the SELLER may themselves be organizations,
each with its own internal structure.

A key benefit of the commitments representation is that commitments can be ma-
nipulated in a perspicuous and principled manner, thus yielding the flexibility needed in
automated contractual interactions. A commitment may be created. When its antecedent
holds, it is detached meaning that it reduces to a commitment to bring about the con-
sequent unconditionally. When its consequent holds, it is discharged—this could even
happen before the commitment is detached. The creditor may assign a commitment
to another agent. Conversely, a debtor may delegate a commitment to another agent.
A debtor may cancel a commitment and a creditor may release the debtor from the
commitment.

Note that the debtor and creditor of a commitment need not be its direct performer
or beneficiary [17]. Often, each party would play a role in a participating organization,
and would represent the interest of the organization for the purposes of the commitment.
For example, a manufacturer may commit to repairing some piece of machinery for a
factory, but the repairer may be a subcontractor of the manufacturer.

3.2 Robustness of a Contract

The robustness of a contract depends on how its commitments relate to the goals of the
contracting parties.

Definition 1 relates each of a party’s goals to commitments in the contract. It says
that the fulfillment of a subset of commitments—in any manner—must lead to the sat-
isfaction of the goal, that is, the goal is supported. The set of commitments leading to
fulfillment of the goals may represent either the normal way to fulfill the goals where
all services are delivered successfully, or a compensating way to fulfill the goals where
some commitments are violated but compensating commitments are fulfilled.

Definition 1. A contracting party’s goal is supported by a contract if and only if the
fulfillment of the subset of contract commitments, in which the party is the creditor,
entails the goal.

Given the above definition, we can then define what it would mean for a contract to
be robust for a contracting party.

Definition 2. A contract is robust for a contracting party if all of the contract party’s
goals are supported by the context. A contract is robust overall if it is robust for all its
contracting parties.

In order to specify how to assess robustness, we must define what it means for (1) a
contracting party’s goals be entailed by the contract and (2) a commitment to compen-
sate the failure of another commitment. Both of the above relate to the different types



Product

Quality
constraints

Implementation
constraints

Process

Service

Fig. 1. Control flow for the reasoning process.

of behavior a contractual commitment can address. Therefore, it is important to model
the kinds of commitments depending on the purpose they serve in the contract. Below,
we enhance our basic commitment model to include the specification of commitments
based on their purpose.

3.3 Enhanced Commitment Structure

From our examination of real-life contracts, we observe that the commitments occurring
within them exhibit a particular structure, which we exploit to assess the robustness of
contracts.

At the heart of this structure is the idea of a service. A service is the creation of
some product by a process under the assumed circumstances, as shown in Figure 1. The
product is what an agent actually wants, whereas the process is the means by which the
product is brought about. The product may be an artifact or an activity taking place
or something holding true about the world. Significantly from the perspective of ro-
bustness, it is often the case that a product can be evaluated by its consumer whereas
the process is usually hidden. The assumed circumstances constitute normal, expected
operation: a contract sets up expectations about what each party will do and does so
assuming the rest of the world works in a particular way. Considering these assumed
circumstances enables us also to consider what should happen when they do not hold
in some way.

We view contracts as inherently symmetric among the parties. Thus each party po-
tentially provides one or more services to the others. A service commitment is, then, a
commitment whose debtor plays a role in which it provides a service to the creditor of
the commitment. A service commitment states what is to be produced by the service
and under what assumed circumstances, without further describing the product or pro-
cess. In terms of the overall structure of a commitment described in Section 3.1, the
service product is the consequent of the commitment.

A contract contains a set of service commitments. For each service, there are then a
number of other constraints and commitments that are meaningful when understood in
context of the service.

– Quality constraints, with regard to a service, are restrictions on the debtor to ensure
that the service product is of a minimum acceptable quality.



– Implementation constraints, with regard to a service, are restrictions on the debtor
to ensure that the process used for production meets certain requirements.

– A contingency commitment, with regard to a service, is a commitment on the debtor
or a third party to provide an alternative service when the assumed circumstances
do not hold (and stated contingency circumstances hold instead).

– A resolution commitment, with regard to a service, is a commitment on the debtor
or a third party to provide an alternative service when the service commitment is
violated.

– An audit commitment, with regard to a service, is a commitment on the debtor or a
third party to perform an audit of the service, the product of which is the record of
the service having been conducted.

Using the above enhanced structure, we model a contract as a set of such com-
mitments. The structure for documenting a commitment C is shown in Table 1. As
explained in Section 3.1, each contract has a CREDITOR and a DEBTOR agent. The
antecedent is divided into an Activation condition, which states what triggers the com-
mitment to apply, and Assumed circumstances, which states what is assumed to hold
when the commitment applies. Both must be true for the commitment to apply, but they
are dealt with in different ways. If the Activation condition does not hold at some time,
then the commitment simply does not apply at that time. Conversely, if the Activation
condition holds but the Assumed circumstances do not, then the Contingency commit-
ment applies instead (if one is given).

The consequent is similarly divided into parts: for the consequent to be true, the
Product must have been produced such that the Quality properties hold true of the
service product and the Implementation properties hold true of the service process.

Each commitment C additionally has related commitments. A Resolution commit-
ment is applicable when the original commitment C is violated, that is, the antecedent
of the resolution commitment is the violation of the original commitment. An Audit
commitment is applicable whenever commitment C’s process is enacted (and thus will
has as antecedent the same or a more general antecedent than commitment C) and pro-
duces documentation regarding the service process.

A contract modeled so as to analyze robustness then, is a set of enhanced com-
mitments, EC(CREDITOR, DEBTOR, activation, assumed, product, quality, implemen-
tation), together with functions that map from enhanced commitments to resolution,
contingency, and audit commitments (each of which themselves is an enhanced com-
mitment).

4 A Methodology for Contract Robustness

Given this structured model for expressing contracts in a way that is appropriate to
analyzing their robustness, we are now able to present a methodology for determining
whether a contract is robust or not. Our proposed methodology has two stages: first, it
involves mapping the contract text to the commitments model introduced in Table 1;
and, second, it involves applying rules to this mapping to check for robustness.

The first phase of our methodology consists of a number of steps, with each step
identifying certain artifacts within the contract, and verifying whether these artifacts



Table 1. Enhanced commitment structure to assess robustness.

Enhanced commitment
Reference An identifier to refer to the commitment
Creditor The beneficiary of the service
Debtor The party responsible for providing the service

Antecedent
Activation Under what circumstances this commitment applies
Assumed Circumstances assumed in providing service

Consequent
Product The product of the service
Quality The properties that should hold for the product
Implementation The properties that should have held for the service process

Related
Contingency A commitment regarding what should be done when the assumed circumstances

do not hold (referred to by identifier)
Resolution A commitment regarding what should be done when this commitment is violated

(referred to by identifier)
Audit A commitment to produce data about how this service is performed (referred to

by identifier)

meet some basic rules to ensure the contract is correct and robust in trivial ways. For
example, verifying might mean ensuring that no commitment has the same creditor as
debtor, and that it is clear when the contract begins and ceases to have force. In the next
section (Section 3.2), we introduce the more rigorous robustness rules, which may not
hold even for apparently well-drafted contracts.

Our methodology consists of the following steps. For each step, we give the number
of the section in this paper in which that step is explained.

1. Identify the critical entities involved in the commitments (Section 4.1)
(a) Identify the contracting parties (Section 4.1)
(b) Identify each contracting party’s goals (Section 4.1)
(c) Identify domain concepts (Section 4.1)
(d) Identify contract scope (Section 4.1)

2. Map the above entities into the commitment model (Section 4.2)
(a) Model services, processes, and products (Section 4.2)
(b) Model commitments regarding services (Section 4.2)

3. Check the robustness of the commitments (Section 5)
(a) Check that the contract meets each party’s goals (Section 5.1)
(b) Check that it is well specified how services should be provided and how to

handle circumstances in which the services are not provided as specified (Sec-
tion 5.2)

(c) Check that the contract does not place conflicting demands on the parties (Sec-
tion 5.3)

We illustrate the methodology via clauses selected from the ASE-Motorola contract,
especially an abbreviated form of Clause 11.



Clause 11: ASE shall ship the Contract Products to the destinations identified
by Motorola. Motorola shall acknowledge to ASE the receipt of each shipment
of Contract Products, stating the quantity and type of, and any damages existing
at delivery to, such Contract Products within [X days] of receipt at Motorola’s
ultimate destination . . . ASE shall certify to Motorola with each shipment that
the Contract Products contained therein have successfully passed applicable
testing and meet all specifications . . . If Motorola rejects any Contract Prod-
ucts, Motorola and ASE shall confer to determine the reason for the rejection.
ASE shall immediately exercise commercially reasonable efforts to develop
and implement a corrective action plan for any errors, including manufacturing
errors or defects, identified in its systems.

4.1 Entity Identification

It is crucial to identify the various artifacts referred to in the contract. These artifacts
may then be used within commitments in some structured or unstructured manner. In
the former case, rules may be created identifying how they may, or should, be used in
order to lead to a robust contract. The following entities are of interest.

Contracting parties A contracting party named by the contract is an entity whose
commitments and responsibilities are described by the contract, and who is a signatory
to the contract. In Clause 11, ASE and Motorola are the contracting parties.

A contract may identify specific roles within a contracting party, when it is an orga-
nization. For example, ASE is committed to providing Motorola Employees with office
facilities according to Clause 5 (not shown). Other roles mentioned in the contract in-
clude those of a coordinator and the ASE account team, which then includes additional
roles such as manager and executive.

Contract goals Business parties adopt a contract if it is conducive to achieving their
goals—if the contract is robust, then these goals will be achieved. The preamble spec-
ifies the overarching goal; here, this is the successful production and delivery of semi-
conductor products from ASE to Motorola. This leads to other identifiable subgoals
regarding high-level concepts such as the goal of having ASE deliver the product in
a timely manner, the defect rate falling below some threshold, and so on. As we dis-
cuss below, each of these goals must be satisfied by some combination of commitments
specified in the contract.

Domain concepts Contracts specify what the contracting parties are committed to do
within some domain, specifying the relevant states of domain artifacts and how to ma-
nipulate them. Domain concepts in Clause 11 include products, rejection, receipt, desti-
nation, damage, among others. Although it is beyond the scope of this paper, we assume
a suitable ontology for each domain.



Scoping A robust contract should specify when it is in effect, and when it expires, for
example, via a termination clause that specifies the conditions under which the contract
ends. Clause 3 (not shown) within the Motorola-ASE contract states that the contract is
effective from the signing date, and is in force for five years. It also provides alternative
ways of terminating the contract early. A basic requirement of robustness is clarity of
the scope.

Basic Rule 1 A robust contract specifies the conditions when the contract begins and
ends.

4.2 Mapping to Commitment Model

Once we have identified the critical entities, we map them into our commitment-based
model.

Services, processes, and products Clearly, it is necessary to identify the services to
which the contractual commitments apply. For each service, its product—that is, its
desired outcome—must also be identified. Each service is expressed, or sometimes im-
plied, in contract clauses using the identified domain concepts, and each party’s goals
are expressed in terms of the services.

The Preamble in our example contract describes the primary services under consid-
eration, as follows: “the assembly, test and associated services on high quality semicon-
ductor products in volume.” This hints at a service whose product is assembled semi-
conductor products and a service whose product is tested semiconductor products. Later
clauses identify other “associated” services. For example, Clause 11 includes “ASE
shall ship the Contract Products to the destinations identified by Motorola,” the prod-
uct of which is the delivery of goods, and goes on to make statements about how this
service should be provided.

Service commitments Because we view a contract as an aggregation of the commit-
ments it imposes upon the contracting parties, determining whether a contract is ro-
bust involves identifying the commitments found in the contract. The remainder of the
methodology focuses on these commitments, and the relationships between them.

Each service identified in the contract has a corresponding commitment, with one
identified party as debtor, and another as creditor. It is a basic prerequisite for robust
execution that any commitment must have some contracting party (and sometimes a
specific role within it) as the commitment’s debtor and creditor, implying the following
rule.

Basic Rule 2 A robust contract must ensure that every commitment within the contract
will have a contracting party as a debtor and a creditor.

For the primary shipment service referred to in Clause 11, the creditor is Motorola
and the debtor is ASE. Further, a valid commitment must have distinct parties as debtor
and creditor.



Basic Rule 3 The same entity may not be named a debtor and a creditor within a single
commitment.

Finally, the given contract must translate unambiguously to our formal model, and
so the following basic rule applies.

Basic Rule 4 A commitment must only refer to concepts that have been defined within
the domain ontology.

Table 2. Service commitment for shipping.

Commitment for shipment service
Reference C11-Shipment
Creditor Motorola
Debtor ASE

Antecedent
Activation When products ready to ship
Assumed

Consequent
Product Products arrived at specified Motorola site
Quality No damage to products
Implementation Perform applicable tests to certify products

Related
Contingency
Resolution C11-Rejection
Audit C11-Receipt
Audit C11-Quality

Example We apply the above to the initial modeling of Clause 11. Table 2 expresses
the commitment to perform the primary service of the clause, that is, shipment of prod-
ucts to specified destinations. This commitment is given an identifier, C11-Shipment,
and refers to three other commitments extracted from the clause: C11-Rejection, C11-
Receipt, and C11-Quality. For brevity, we omit the models for the latter two audit com-
mitments; those refer to Motorola’s commitment to provide a timely receipt for prod-
ucts received, and ASE’s commitment to provide a statement of quality, respectively.
The resolution commitment, C11-Rejection, is invoked when the service product is not
achieved, the commitment to quality (no damage) is violated, or the commitment to
implementation (tests performed) is not fulfilled.

Table 3 shows the model for C11-Rejection. Here, the service performed is the cor-
rection of the cause of rejection. No further commitment is involved, as the clause does
not specify what should be done to audit the commitment or in contingency situations.



Table 3. Commitment to rectify problems (rejected products).

Commitment for acting in case of rejection
Reference C11-Rejection
Creditor Motorola
Debtor ASE

Antecedent
Activation Motorola rejects delivered products
Assumed Within X days of delivery

Consequent
Product Corrective plan of action developed and implemented by ASE
Quality
Implementation

Related
Contingency
Resolution
Audit

5 Robustness Rules

Given the model of contracts in the preceding section, we now specify rules for deter-
mining the robustness of contracts expressed in that model. We divide such rules into
the following main categories:

1. those that determine whether the contract contains the content required by each
party;

2. those that determine whether each contract commitment is handled robustly; and
3. those that apply to consistency between commitments.

5.1 Necessity Robustness Rules

A robust contract must ensure that each contracting party’s goals are satisfied when the
contract executes correctly. The consequent of a service commitment may be used to
capture the commitment’s creditor’s goals (when the commitment’s antecedent holds).
Therefore, the desired outcome of a contract may be captured by some subset of the
contract’s service commitments. A robust contract must thus satisfy the following rule.

Robustness Rule 1 Each goal expected to be satisfied by the contracting parties should
be (a necessary implication of) the consequent of a service commitment.

Applying this rule to our example, the commitments shown in Tables 2 and 3 are
judged robust with regard to this rule: on the former’s completion, Motorola will have
the components it desires; on the latter’s completion, any problems will have been ap-
propriately addressed.



5.2 Coverage Robustness Rules

A service commitment can often be fulfilled in multiple ways, and not all are of equal
value to the contracting parties. In order to be robust, the contract must ensure that a
commitment is met appropriately.

Robustness Rule 2 Each service commitment must have corresponding quality con-
straints that specify what it means for the service product to achieve an adequate stan-
dard.

Table 2 shows a simple statement of the quality required of the product: no damage
should have occurred. In the commitment in Table 3, no quality constraints are given.
Whereas this omission may be deemed appropriate by the contracting parties, the above
rule highlights the fact that the contract is less robust if Motorola places no criterion on
what an acceptable corrective plan can be.

Whereas the quality constraints concern the service product, we may also apply cri-
teria for judging the process by which the service is conducted, leading to the following
rule.

Robustness Rule 3 If a service commitment may be met in a number of ways, a proper
subset of which capture the creditor’s goals, then the service commitment should have
corresponding implementation constraints that specify what it means for the service
commitment to have been achieved in a satisfactory manner.

Table 2 shows a commitment by ASE to apply tests for damage and to ensure speci-
fications are met prior to delivery (and therefore part of the service process). In contrast,
Table 3 gives no implementation commitment. The above rule highlights the fact that
the contract is less robust if Motorola places no criterion on what process is accept-
able in developing a corrective plan, for example, the factors that ASE should take into
account.

The fulfillment of service commitments and quality constraints is usually publicly
observable. For example, whether ASE has manufactured the semiconductor chips up
to the requisite standard is verifiable by Motorola once Motorola has received the chips.
However, implementation constraints restrict the internal processes a contract party em-
ploys; compliance with such commitments is not visible outside the company. For ex-
ample, Motorola cannot ascertain from outside ASE whether ASE has met the ISO 9000
standards in manufacturing the chips. Hence, implementation constraints call for audit
commitments.

Robustness Rule 4 Each service’s implementation constraints must have a correspond-
ing audit commitment that ensures that the satisfaction or violation of the constraints is
detected.

If a commitment has been violated (for example, if the product is not available, or if
quality or implementation constraints haven’t been followed), then the creditors’ goals
may not be achieved. In order to be robust, therefore, the creditor in the commitment
requires that some compensating commitment comes into force.



Robustness Rule 5 Each commitment must have a corresponding resolution commit-
ment that ensures that the violation of the former commitment results in a suitable
sanction on the debtor.

Table 2 shows two commitments to ensure correct auditing by both parties involved.
It is only by auditing that any violations of the implementation constraints are detected.
There is also a resolution commitment, to specify what should be done when the prod-
uct or process is inadequate according to the quality and implementation constraints.
Table 3 shows no audit or resolution commitments are given. The above rules highlight
the fact that the contract is less robust if there is no record of ASE having produced and
implemented such a corrective plan, or what action to take if ASE fails to produce such
a plan.

Further, for the debtors of a contract commitment, the contract is robust only if it
adequately accounts for exceptional circumstances, beyond those assumed in normal
operation. We ensure the robustness of the contracts in relation to these aspects, with
the following rule.

Robustness Rule 6 Each commitment may have corresponding contingency commit-
ments that ensure that, in each exceptional circumstance envisaged, the violation of the
former commitment does not result in an inappropriate sanction on the debtor.

Table 2 shows no contingency commitments because the contract fails to specify as-
sumed circumstances. The absence of assumptions should draw the modelers’ attention,
but may merely indicate that there is no contingency to consider. Table 3 also states no
contingency commitment, but does have assumed circumstances. The above rule high-
lights the fact that the contract is less robust if it is not specified what should be done if
Motorola only rejects a product long after (more than X days) it has been delivered.

It might seem that, if applied recursively, the above rules could lead to an infinitely
large contract; for example, each commitment requires another commitment for reso-
lution. However, our use of the context of a contract—as in a business contract within
a wider legal system—provides a natural solution. Not all of the associated commit-
ments mentioned in the rules above need to be in the contract document itself; many
may be present in the wider context. Ultimately, the audit, resolution, or contingencies
of contextual commitments may be captured via general approaches, such as “file a
lawsuit.”

5.3 Consistency Robustness Rules

The above rules consider the requirements of robustness on each commitment. The
robustness of a contract as a whole depends in addition on whether its commitments are
realizable.

It should always be clear to a contracting party what to do to fulfill the contract, even
in the case of multiple failures. Further, if success in one commitment prevents success
in another, then the contract cannot be robust. A particular example of this is where
two commitments require the same party in the same system state to do two conflicting
things. A robust contract does not have such conflicts between its commitments, and
the following rule expresses this constraint.



Robustness Rule 7 For any given contracting party and applicable system state, by
performing an action necessary to avoid violating one commitment, the action should
not violate any otherwise nonviolated commitment.

Taken together, the rules specified above provide us with a means of ensuring that
a contract is robust at the point of specification. The full set of rules is summarized in
Table 4, indicating which aspects of the contract each rule applies to.

Table 4. Contract rules.

Rule Target
BASIC RULE 1 Scope of contract
BASIC RULES 2 & 3 Services and contracting parties
BASIC RULE 4 Well-defined contract
ROBUSTNESS RULE 1 Product
ROBUSTNESS RULE 2 Quality constraints
ROBUSTNESS RULE 3 Implementation constraints
ROBUSTNESS RULE 4 Audit commitments
ROBUSTNESS RULE 5 Resolution commitments
ROBUSTNESS RULE 6 Contingency commitments

6 Evaluation

We used the Motorola-ASE contract as primary inspiration for our approach to model-
ing and assessing contract robustness (along with our prior experience with case studies
as part of electronic contracting projects). To evaluate our proposed approach, we took
an entirely independent contract and applied our methodology to it. Figure 2 shows an
excerpt from a short contract7 between a juggling society and an event organizer. We
now show how our methodology applies to determine whether this contract is robust.

6.1 Entity Identification

The two contracting parties involved in this contract are the JUGGLING CLUB (UJC),
and the CANTERBURY CENTRE DINNER (CCD). Additional roles include PERFORMER
and JUGGLER. As we see below, this contract obeys Basic Rules 2 and 3.

The CCD’s goal from the contract is to obtain performers for their dinner. The UJC’s
goal is to get paid.

Apart from temporal concepts (relating to dates and times), and general concepts
such as money, we may identify the domain concepts listed in Table 5. Since only these
concepts are referred to within the contract, Basic Rule 4 is satisfied.

The contract initiates as soon as it is signed and it is implied that it expires at the
end of the performance. Note that the lack of an explicit expiration condition suggests

7 http://users.ox.ac.uk/ juggsoc/contract.shtml



Contract For: Canterbury Centre Dinner 2003 (“CCD”),
Friday 6 June 2003, 24 High Street, Canterbury.

This agreement is entered into between the University Juggling Club (“UJC”) and
the Canterbury Center Dinner 2003 on the following terms:

1. Service Provider: University Juggling Club.
2. Employer: Canterbury Center Dinner.
3. To be provided by UJC: Performers: J Woods (juggler); one other juggler; all

equipment necessary for performance.
4. To be provided by CCD: Cloakroom.
5. Venue address: 24 High Street, Canterbury.
6. CCD understands that performances are restricted in venues with ceilings of

insufficient height. The ideal height is 5 meters. Outside performances are re-
stricted in rain or strong winds.

7. Date of Performance: Friday 6 June 2003, starting at 6:30PM.
8. Duration of Performance: 1.5 hours. Short (less than one minute) breaks are

part of the performance.
9. Fee: £30 per juggler + £10 expenses + £90 insurance (total £160).

10. If UJC is forced to cancel, all monies (including £90 deposit) will be refunded
in full. If the Employer cancels with at least 24 hours notice, UJC will retain
£90 and return any other monies.

11. Should poor weather mean that the Event takes place indoors, UJC will refund
£10 expenses.

12. Performers will not consume any alcohol until after completion of services as
agreed.

13. CCD will be responsible for compensation to UJC for damage to equipment
caused by those attending the Event unless damage is caused when (if) Per-
formers have left equipment unguarded.

14. UJC will be liable for any injury sustained by a guest at the Event if such
injury results from provision of services as agreed upon in this contract unless
the Event fails to provide a suitable area for performance.

Fig. 2. An extract from a contract to provide juggling services.

one problem with the robustness of the contract. One may envision a situation where
some equipment is damaged, and a disagreement arises as to whether this damage falls
under the contract or not (for example, when the jugglers and guests are on their way
home from the dinner). Thus, Basic Rule 1 is not satisfied within this contract.

6.2 Mapping to Commitment Model

We now map clauses from the contract to the commitment model. Clauses 3 to 7 imply
a service to be provided: the provision of jugglers and equipment by UJC, modeled in
Table 6. UJC is the debtor, CCD is the creditor and the eventual product of the service
is that the jugglers perform at the event. Implementation constraints are specified: that



Table 5. Domain concepts for the Juggler contract, grouped according to the commitments that
they most closely relate to.

Service performance, breaks, guests, venue, equipment
Contingency deposit, damage, injury, guarding, poor weather, cancellation
Implementation alcohol consumption, cloakroom, performance area, indoors, height,

outside
Resolution compensation, liability, refund

the jugglers remain sober (Clause 12). Where the service cannot be provided due to
poor weather conditions (assumed circumstances not holding, Clause 11) or the per-
formance is canceled by UJC (violation of commitment under assumed circumstances,
Clause 10), contingency and resolution commitments apply, respectively. Clause 9 is a
commitment for a separate payment-for-juggling service, and so is not modeled here.

Table 6. Service commitment: provide jugglers, equipment (the numbers refer to clauses in the
textual description).

Commitment for providing resources
Reference C-ProvisionOfResources
Creditor CCD (2)
Debtor UJC (1)

Antecedent
Activation Agreement to contract
Assumed Venue is indoor and of adequate height or outdoor and there is no rain or strong

winds (6)
Consequent

Product C-JugglerPerform (3,4,5,7)
Quality C-PerformanceFor1.5Hours (8)
Implementation C-JugglersWillNotConsumeAlcohol (12)

Related
Contingency C-PoorWeather (11)
Contingency C-Cancellation (10)
Resolution C-CompensationResponsibility (13)
Resolution C-Injury-Liability (14)

6.3 Assessing Robustness

Having identified the commitments, we may check whether they meet the appropriate
robustness rules. Clearly, each desired outcome of the contract meets the commitments
specified in Clauses 3, 4, 7, 8 and 9, as a performance will take place, and UJC will be
paid. Thus, Rule 1 is satisfied.

According to Rule 2, each service commitment must have associated quality con-
straints. Whereas one assessment of quality is given for the service in Table 6, and so the



clause can be judged somewhat robust, other quality measures may also be considered
(for example, specifying how capable the juggler should be).

UJC agrees to implementation constraints: that the jugglers do not consume alcohol
while performing. Note that although there is no corresponding audit commitment, this
is only because the contracted performance is slated to happen in a public venue and
CCD would easily be able to detect noncompliance on part of the juggler. Thus Rule 4 is
satisfied. The parties may consider additional implementation constraints, for example
if there are any stipulations that should be made about how the product is reached, such
as whether the organizers are given prior warning about when the jugglers will arrive.

There are some commitments for contingency and resolution in Table 6. Therefore,
there is some robustness in this regard according to Rules 5 and 6. However, the contract
can be even more robust if consideration is made of the other ways in which the assumed
circumstances may not come about or the service is not provided. For example, the
assumed circumstances are a conjunction of criteria and the contract does not say how
to handle jugglers arriving at a venue with too low a ceiling. Similarly, the quality
constraints require jugglers to remain sober, but there is no means of redress specified
if this commitment is violated.

The juggling contract’s inability to deal with such unexpected situations, together
with its vagueness, means that it lacks robustness in several ways, and that in unexpected
situations, disagreements between the parties may occur that the contract may be unable
to resolve.

7 Related Work

Tropos is one of the leading AOSE methodologies with a substantial emphasis on early-
stage requirements [4]. Tropos is centered on the notion of goals (along with dependen-
cies among goals), and generally works best where the system-to-be is built to accom-
modate the goals of the stakeholders, modeled as actors. Tropos does not naturally apply
to cross-organizational settings, where there is no unique system-to-be but rather one
per stakeholder and where often the challenge is to specify the interaction protocol or
rules of encounter rather than a complete implementation of a system. Mallya and Singh
[12] relate protocols with Tropos using dependencies as bases for inducing protocols.
Telang and Singh [18] have sought to incorporate commitments into Tropos as first-
class modeling concepts. However, the existing works on Tropos have a general bias
toward greenfield system designs whereas the approach we propose above begins from
existing contracts and thus potentially can apply when a functioning (though potentially
inadequately functioning) cross-organizational system is already in place.

Much work has been done on using automated contracts within computer science,
and particularly within the area of multiagent systems. It is possible to categorize this
work based on the contract life cycle. Our work in this paper concerns itself with the first
stage of the contract life cycle, namely contract drafting. In this phase, themes such as
the precise language used to represent the contract are important, as well as challenges
such as contract negotiation (for example, as studied by Carbogim and Robertson [5])
and contract validation. Once a contract is drafted, it comes into effect, and further



challenges such as contract monitoring and enforcement become important, but are not
further discussed here. Daskalopulu et al. [7] describe logic-based tools for this end.

Many contract languages that have been proposed, including those by Abrahams
and Bacon [1], Grosof and Poon [11], and Governatori [10]. However, none of them
represent contracts as a set of commitments as we do. We do not study how a con-
tract comes into being, concentrating instead only on whether it is robust or not. Thus,
our work falls into the area of contract validation. However, most work on contract
validation concerns itself with either ensuring that contract clauses are consistent, for
example, by Daskalopulu [6], or ensuring that a sound legal basis exists, for example, by
Gisler et al. [9]. The notion of robustness adds to, rather than replaces these concerns.

The only other large-scale analysis of contractual requirements that we are aware of
is the work of Daskalopulu et al. [6], who investigate how to support large engineering
contracts. However, their work was focused on identifying language requirements for
such contracts, not on a software engineering methodology as here.

The work of Desai et al. [8] is relevant in this regard. Desai et al. study contracts
from the perspective of utility theory as a basis for determining from the perspective of
a contracting party whether a particular contract is safe (never produces negative utility)
or beneficial (produces positive utility) for it. It would be useful to incorporate Desai et
al.’s representation and reasoning approach into our methodology, although a practical
challenge that such economic approaches face is determining the relevant utilities and
probabilities in domains of sufficient complexity to be practically valuable.

8 Conclusions and Directions

In this paper, we have sought to develop a model, a methodology, and heuristic rules by
which we can capture and analyze requirements from business contracts as a potential
basis for developing robust multiagent implementations of software systems in open
environments.

We identified the notion of robustness as critical to a contract. Informally, a robust
contract is one that meets the contracting parties’ goals for the contract, and handles
unexpected situations gracefully. We proposed a methodology for determining whether
a contract is robust, and evaluated portions of this methodology on portions of two real
contracts. Our approach models contracts such that their robustness is assessed in a
structured manner. However, many open questions remain.

First, it would be interesting to map the notions of robustness into an existing con-
tract language, such as the one proposed by Oren et al. [15], and to automate the rules for
robustness, creating an algorithm that may identify whether a contract is robust or not.
It would also be useful to study a large number of additional contracts, and see whether
our rules for robustness are exhaustive, or should be altered in some way. Further, it
may be possible to identify additional commonly occurring classes of commitments,
together with associated robustness rules.

The notion of robustness becomes increasingly important as agents autonomously
negotiate and create contracts between themselves. By creating a robust contract, able
to state what should occur in all situations (within the context of the contract), an agent’s
cognitive load is reduced, as it does not need to reason about whether the contract was



adhered to or not. Further, robust contracts minimize the situations in which humans
need to intervene in order to handle agent disagreements. While many open problems
remain, this paper provides an initial approach to identifying and creating robust con-
tracts.

References

1. Abrahams, A.S., Bacon, J.M.: A software implementation of Kimbrough’s disquotation the-
ory for representing and enforcing electronic commerce contracts. Group Decision and Ne-
gotiation 11(6), 487–524 (2002)

2. Bordini, R.H., Dastani, M., Dix, J., Fallah-Seghrouchni, A.E. (eds.): Multi-Agent Program-
ming: Languages, Platforms and Applications, Multiagent Systems, Artificial Societies, and
Simulated Organizations, vol. 15. Springer (2005)

3. Bordini, R.H., Hübner, J.F., Wooldridge, M.J.: Programming Multi-Agent Systems in
AgentSpeak using Jason. John Wiley & Sons, Chichester, UK (2007)

4. Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., Mylopoulos, J.: Tropos: An agent-
oriented software development methodology. Journal of Autonomous Agents and Multi-
Agent Systems 8(3), 203–236 (May 2004)

5. Carbogim, D., Robertson, D.: Contract-based negotiation via argumentation (a preliminary
report). In: Proceedings of the Workshop on Multi-Agent Systems in Logic Programming:
Theory, Application, and Issues (MAS) held at the International Conference on Logic Pro-
gramming (ICLP). Las Cruces, New Mexico (1999)

6. Daskalopulu, A.: Logic-based tools for legal contract drafting: Prospects and problems. In:
Proceedings of the First Logic Symposium. pp. 213–222. University of Cyprus Press (1997)

7. Daskalopulu, A., Dimitrakos, T., Maibaum, T.: Evidence-based electronic contract perfor-
mance monitoring. Group Decision and Negotiation 11(6), 469–485 (2002)

8. Desai, N., Narendra, N.C., Singh, M.P.: Checking correctness of business contracts via com-
mitments. In: Proceedings of the 7th International Joint Conference on Autonomous Agents
and MultiAgent Systems (AAMAS). pp. 787–794. IFAAMAS, Columbia, SC (May 2008)

9. Gisler, M., Stanoevska-Slabeva, K., Greunz, M.: Legal aspects of electronic contracts. In:
Proceedings of the CAiSE Workshop on Infrastructure for Dynamic Business-to-Business
Service Outsourcing (IDSO). CEUR Workshop Proceedings, vol. 30. CEUR-WS.org, Stock-
holm (2000)

10. Governatori, G.: Representing business contracts in RuleML. International Journal of Coop-
erative Information Systems 14(2–3), 181–216 (2005)

11. Grosof, B., Poon, T.C.: SweetDeal: Representing agent contracts with exceptions using se-
mantic web rules, ontologies, and process descriptions. International Journal of Electronic
Commerce 8(4), 61–98 (2004)

12. Mallya, A.U., Singh, M.P.: Incorporating commitment protocols into Tropos. In: Müller,
J.P., Zambonelli, F. (eds.) Proceedings of the 6th International Workshop on Agent Oriented
Software Engineering (AOSE 2005). LNCS, vol. 3950, pp. 69–80. Springer, Berlin (2006)

13. Meneguzzi, F., Miles, S., Holt, C., Luck, M., Oren, N., Faci, N., Kollingbaum, M.: Elec-
tronic contracting in aircraft aftercare: A case study. In: Proceedings of the 7th International
Conference on Autonomous Agents and Multiagent Systems. pp. 63–70 (2008)

14. Nunes, I., Cirillo, E., de Lucena, C.J.P., Sudeikat, J., Hahn, C., Gomez-Sanz, J.J.: A survey on
the implementation of agent oriented specifications. In: Agent-Oriented Software Engineer-
ing X: State of the Art Survey, Lecture Notes in Computer Science, vol. 6038, pp. 157–167.
Springer (2010)



15. Oren, N., Panagiotidi, S., Vázquez-Salceda, J., Modgil, S., Luck, M., Miles, S.: Towards
a formalisation of electronic contracting environments. In: Proceedings of the International
Workshop on Coordination, Organization, Institutions and Norms in Agent Systems (COIN)
held at AAAI. pp. 61–68. Chicago (2008)

16. Rodrı́guez-Aguilar, J.A., Martı́n, F.J., Noriega, P., Garcia, P., Sierra, C.: Towards a test-bed
for trading agents in electronic auction markets. AI Communications 11(1), 5–19 (1998)

17. Singh, M.P.: An ontology for commitments in multiagent systems: Toward a unification of
normative concepts. Artificial Intelligence and Law 7, 97–113 (Mar 1999)

18. Telang, P.R., Singh, M.P.: Enhancing Tropos with commitments. In: Borgida, A., Chaudhri,
V.K., Giorgini, P., Yu, E.S.K. (eds.) Conceptual Modeling: Foundations and Applications.
LNCS, vol. 5600, pp. 417–435. Springer (2009)

19. Telang, P.R., Singh, M.P.: Abstracting and applying business modeling patterns from Roset-
taNet. In: Proceedings of the 8th International Conference on Service-Oriented Computing
(ICSOC). pp. 426–440. ACM, San Francisco (2010)

20. Telang, P.R., Singh, M.P.: Specifying and verifying cross-organizational business models:
An agent-oriented approach. IEEE Transactions on Services Computing 4 (2011), in press

21. Weyns, D., Haesevoets, R., Helleboogh, A.: The MACODO organization model for context-
driven dynamic agent organizations. ACM Transactions on Autonomous and Adaptive Sys-
tems (TAAS) 5(4), 16:1–16:29 (Nov 2010)


