Shot noise in nanostructures - I

Yaroslav M. Blanter

Kavli Institute of Nanoscience Delft University of Technology

Collaboration:

Markus Büttiker Stijn van Langen Eugene Sukhorukov Henning Schomerus Carlo Beenakker Gabriele Campagnano Yuli Nazarov Thomas Ludwig Alexander Mirlin Omar Usmani

Signal and Noise

Each new measurement yields a different pattern

Signal and Noise

Two approaches to noise:

- Get rid of the noise and get the signal;
- > Try to extract useful information from noise:
- What is the magnitude of the fluctuations?
- How are they correlated in time?

What information can we extract (Current noise):

- Transmission properties ("fingerprints");
- Energy scales and transition rates.

Shot Noise

Electric current as a sequence of random uncorrelated events

Schottky '18

$$I = e \sum_{n} \delta(t - t_{n})$$

Shot Noise – Poisson statistics

Schottky '18

$$I = e \sum_{n} \delta(t - t_{n})$$

τ - average time between the events

Average current: $\langle I \rangle = e/\tau$

Noise: $S(\omega) = 2\langle I(t)I(t')\rangle_{\omega} = 2e^2/\tau = 2e\langle I\rangle$

Higher moments -> full counting statistics

Landauer formula

Scattering theory of transport

Input: Scattering properties of a nanostructure (from quantum mechanics)

Output: Transport properties

Landauer formula

Landauer formula:

$$I = 2_{S} \frac{e}{2\pi\hbar} \int dE Tr \hat{t}^{\dagger} \hat{t} \left(f_{L}(E) - f_{R}(E) \right) = 2_{S} \frac{e^{2}}{2\pi\hbar} \sum_{p} T_{p} V$$

Shot noise

Noise:

$$S = 2\langle I(t)I(t')\rangle_{\omega=0}$$

$$S = 2_{S} \frac{e^{3}}{\pi \hbar} \sum_{p} \int dE \left\{ T_{p} \left[f_{L} (1 - f_{L}) + f_{R} (1 - f_{R}) \right] + T_{P} (1 - T_{p}) (f_{L} - f_{R})^{2} \right\}$$

Does not look like Poisson value?

Nyquist-Johnson noise

Equilibrium:
$$|f_L = f_R|$$

$$S = 2_S \frac{2e^2}{\pi \hbar} k_B T \sum_p T_p$$
 Nyquist-Johnson noise

Fluctuation-dissipation theorem: Equilibrium fluctuations are related to the linear response

$$S = 4k_BTG$$

Zero-temperature shot noise

$$S = 2_S \frac{e^3}{\pi \hbar} |V| \sum_p T_p (1 - T_p)$$
 Shot noise

Khlus '87 Lesovik '89 Büttiker '90

Compare to the Poisson value:

$$S < S_P$$

$$S_P = 2eI = 2_S \frac{e^3}{\pi \hbar} |V| \sum_p T_p$$

(Tunnel junction: $S = S_P$)

Shot noise suppression due to statistical correlations!

Fano factor:

$$F = \frac{S}{S_{P}} = \frac{\sum T_{p}(1 - T_{p})}{\sum T_{p}} \le 1$$

Noise in nanostructures

- Shot noise: white, contains information on transmission properties.
- >Nyquist-Jonhson noise: white, only at finite temperature, contains the same information as the conductance.

 $\geq 1/f$ noise: always present in the experiment.

Origin: sample-specific.

Information: unclear.

To avoid: high-frequency measurements.

Shot noise

Shot noise

Non-interacting electrons:

- ❖ T(1-T)
- Multi-terminal conductors
- Counting statistics

Interacting electrons:

- Perturbation theory
- Non-linear transport
- Strongly correlated

Frequency dependence of noise

Non-equilibrium effects: other noise sources

Optics

Decoherence and dephasing

Quantum point contact

Adiabatic approximation

Glazman, Lesovik, Khmelnitskii, Shekhter '88

$$E_{\perp} = \frac{\pi^2 n^2 \hbar^2}{2md^2(z)}$$

serves as an external channel-dependent potential energy

$$T_n = \begin{cases} 0 & E \square & U_n^{\max} \\ 1 & E \square & U_n^{\max} \end{cases}$$

Quantum point contact

Quantum point contact

FIG. 7. Conductance (upper plot) and shot noise (lower plot) as functions of the gate voltage, as measured by Reznikov *et al* [42]. Different curves correspond to five different bias voltages.

Reznikov et al '95

Double barrier

$$T(E) = \frac{T_L T_R}{1 + R_L R_R - 2\sqrt{R_L R_R} \cos \theta(E)}$$

$$\theta(E) = 2w\sqrt{2mE} / \hbar$$

Resonant tunneling

$$\theta(E) = 2\pi n \Rightarrow T = T_{\text{max}} = \frac{4T_L T_R}{(T_L + T_R)^2}$$

$$T_{\min} \propto T_L T_R \square T_{\max}$$

Sharp resonances in T(E)

Double barrier

Linear regime: T(1-T)

Non-linear regime: averaging (summation) over energies

Makes a lot of difference!

Chan & Ting You

$$F = \frac{S}{2eI} = \frac{T_L^2 + T_R^2}{(T_L + T_R)^2}$$

$$\frac{1}{2} < F < 1$$

Chen & Ting '91 Büttiker '91 Davies *et al* '92

Double barrier

FIG. 9. The Fano factor observed experimentally by Li et al [64] as a function of current for three quantum wells, which differ by their asymmetry. The solid line represents the Poisson shot noise value.

Li et al '90

Chaotic cavity

Chaotic motion is described by randomness of the scattering matrix: Random Matrix Theory

Baranger & Mello '94 Jalabert, Pichard & Beenakker '94

Describe as 2 QPC in series: Nazarov '95

Symmetric, $N_L = N_R$

Distribution function:

$$P(T) = \frac{1}{\pi\sqrt{T(1-T)}}$$

Chaotic cavity

Ohm's law!

$$P(T) = \frac{N_L + N_R}{2\pi G_Q} \frac{1}{T} \sqrt{\frac{T - T_c}{1 - T}}$$

$$T_c = \frac{(N_L - N_R)^2}{(N_L + N_R)^2}$$

Fano factor:

Conductance: $G = G_Q \frac{N_L N_R}{N_I + N_R}$

 $F = \frac{N_L N_R}{(N_L + N_R)^2}$

Exp: Oberholzer et al '01

Universal!

Metallic diffusive wire

Transmission eigenvalues are random quantities.

$$\langle T \rangle = \frac{l}{L} \Box 1$$

Transmission distribution??

Metallic diffusive wire

$$P(T) = \frac{l}{2L} \frac{1}{T\sqrt{1-T}}$$
Bimodal!

Fano factor:

$$F = \frac{1}{3}$$

Universal!

Beenakker & Büttiker '92 Nagaev '92

Metallic diffusive wire

Henny et al '99

FIG. 11. Shot noise measurements by Henny et al [81] on three different samples. The lower solid line is 1/3-suppression, the upper line is the hot-electron result $F = \sqrt{3}/4$ (see Section VI). The samples (b) and (c) are short, and clearly display 1/3-suppression. The sample (a) is longer (has lower resistance), and the shot noise deviates from the non-interacting suppression value due to inelastic processes.

Inelastic scattering

- Decoherence: no energy exchange, only the phase of the wave function is modified. No effect on noise. Double-step distribution.
- > Electron heating: energy is exchanged within electron system.
- ➤ Inelastic scattering: energy is transferred to *e.g.* phonons. Equilibrium (Fermi) distribution.

Boltzmann-Langevin equation

Results for shot noise like F=1/3 seem to be classical. Can they be obtained classically?

Boltzmann equation:

$$\left| \left(\partial_t + \nu \nabla + eE \partial_p \right) f = I[f] \right|$$

Collision integral:

$$I[f_p] = \sum_{p'} [J(p', p, r, t) - J(p, p', r, t)]$$

$$J(p, p', r, t) = W(p, p', r) f_p(1 - f_{p'})$$

W – scattering probability per unit time

Boltzmann-Langevin equation

Add the fluctuating part to the elementary currents *J*:

$$J = \langle J \rangle + \delta J, \langle \delta J \rangle = 0$$

$$\langle \delta J(p_1 p_2 r t) \delta J(p'_1 p'_2 r' t') \rangle$$

$$= \delta_{p_1 p'_1} \delta_{p_2 p'_2} \delta(r - r') \delta(t - t') \langle J(p_1 p_2 r t) \rangle$$

Results in Langevin sources in Boltzmann equation:

$$\left(\partial_t + v\nabla + eE\partial_p\right)f = I[f] + \xi(p, r, t)$$

$$\left|\left\langle \xi\right\rangle =0,\left\langle \xi(rpt)\xi(r'p't')\right\rangle \propto\delta(r-r')\delta(t-t')\right|$$

Metallic diffusive wires

Diffusion approximation:

- > Weak dependence of the direction n of momentum
- > Sharp dependence on energy

$$f = f_0 + \vec{n}\vec{f}_1$$

Result:

$$S = 4\sigma \int dE dx f(x, E) [1 - f(x, E)]$$

$$\nabla^2 f = 0$$

$$F = 1/3$$

Electron heating

Equilibrium at local temperature

Energy conservation:

$$T(x) = \sqrt{T_0^2 + \frac{3}{k_B^2 \pi^2} \left(\frac{eV}{L}\right)^2} x(L - x)$$

Fano factor:
$$F = \frac{\sqrt{3}}{4} \approx 0.43$$

Nagaev '95; Kozub & Rudin '95

Andreev reflection

For voltages $\left|e\right|V|<\Delta$ - no normal transport

Andreev reflection: An electron is reflected back from the interface as a hole

- ✓ Energy: conserved
- ✓ Momentum: (always) conserved; velocity changes sign
- ✓ Charge: not conserved! Charge deficit 2e a Cooper pair

Andreev reflection

$$G = G_{Q} \sum_{p} \frac{2T_{p}^{2}}{(2 - T_{p})^{2}}$$

$$S = 32e|V|G_Q \sum_{p} \frac{T_p^2(1-T_p)}{(2-T_p)^4}$$

Tunnel junction:

$$G = \frac{G_{\mathcal{Q}}}{2} \sum_{p} T_{p}^{2}$$

|F=2|: Transfer of double charge!

A nanostructure in a strong (quantizing) magnetic field

Integer QHE: transport only via edge states.

Fractional QHE: additional steps at v=p/qNew state of matter – strongly correlated system

Quasiparticles: fractional charge and fractional statistics

Kane & Fisher '94 De Chamon, Freed, & Wen '96

Transmission is due to the tunneling of electrons between edge states

Ordinary shot noise of a tunnel barrier

Low barrier

Kane & Fisher '94 De Chamon, Freed, & Wen '96

Backscattering is due to the tunneling of quasiparticles between edge states

Effective charge: seen in shot noise!

$$e_{eff} = e/q$$

FIG. 38. Experimental results of Saminadayar *et al* [328] for $\nu = 1/3$ (strong tunneling – weak backscattering regime).

Saminadayar et al '99